期刊文献+

基于SSA-XGBoost的火电厂引风机故障预警研究 被引量:2

Study on Fault Warning of Induced Draft Fan Based on SSA-XGBoost in Thermal Power Plant
下载PDF
导出
摘要 为了提高火电厂引风机故障预警能力,提出了一种基于麻雀算法(SSA)优化XGBoost(eXtreme Gradient Boosting)的故障预警方法。针对XGBoost模型超参数优化的问题,引入SSA算法对XGBoost算法的超参数进行优化得到预警模型的最佳参数。实例表明:SSA优化的XGBoost预警模型可以准确、高效地对引风机进行故障预警,与XGBoost模型和支持向量机(SVM)模型相比,SSA-XGBoost模型精度和效率更高,且具有较强的泛化能力。 In order to improve the fault warning ability of induced draft fans in thermal power plants,a fault warning method optimized XGBoost(eXtreme Gradient Boosting)based on Sparrow algorithm(SSA)was proposed.In order to optimize the hyperparameters of XGBoost model,SSA algorithm was introduced to optimize the hyperparameters of XGBoost algorithm to get the best parameters of the early warning model.The example shows that the SSA-optimized XGBoost early warning model can accurately and efficiently carry out fault early warning for induced draft fan.Compared with the XGBoost model and support vector machine(SVM)model,the SSA-XGBoost model has higher accuracy and efficiency,and has strong generalization ability.
作者 朱越 ZHU Yue
出处 《青海电力》 2022年第S01期37-41,49,共6页 Qinghai Electric Power
关键词 引风机 故障预警 XGBoost 麻雀优化算法 induced draft fan fault warning xgboost sparrow optimization algorithm
  • 相关文献

参考文献6

二级参考文献66

共引文献202

同被引文献14

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部