摘要
目的探讨急性ST段抬高型心肌梗死(STEMI)患者直接经皮冠状动脉介入术(PCI)中发生慢/无复流的危险因素,建立风险预测模型,指导临床实践。方法纳入2015年1月至2018年10月柳州市人民医院心血管内科住院的585例STEMI患者为研究对象。根据PCI中有无发生慢/无复流将患者分为慢/无复流组64例和正常复流组521例。比较两组患者的临床资料,通过多因素Logistic回归分析筛选发生慢/无复流的危险因素,建立风险预测模型,采用Hosmer-Lemeshow(H-L)拟合优度检验和受试者工作特征曲线(ROC)对该模型进行评估。结果两组患者的性别、吸烟史、高血压史、糖尿病史、血脂异常史、冠心病史、陈旧性心肌梗死(OMI)史、PCI史、入院收缩压、舒张压、梗死部位、Killip泵功能分级≥3级发生率、左主干病变、严重冠脉病变支数、肌钙蛋白I(cTnI)、血糖、高敏C反应蛋白(hs-CRP)、白细胞(WBC)计数、空腹血糖、总胆固醇(TC)、低密度脂蛋白胆固醇(LDL-C)、高密度脂蛋白胆固醇(HDL-C)、甘油三酯(TG)比较差异均无统计学意义(P>0.05);而两组患者的年龄、心率、再灌注时间、置入支架数、入院肌酸激酶同工酶(CK-MB)比较差异均有统计学意义(P<0.05);经多因素Logistic回归分析结果显示,在校正其他因素影响后,年龄(OR=1.026,95%CI:1.004~1.050)、心率(OR=1.023,95%CI:1.003~1.044)、再灌注时间(OR=1.061,95%CI:1.015~1.108)、置入支架数(OR=1.608,95%CI:1.112~2.327)是发生慢/无复流的独立危险因素(P<0.05);基于危险因素建立的风险预测模型为:Logit P=-6.805+0.026×(年龄)+0.023×(心率)+0.059×(再灌注时间)+0.475×(置入支架数);H-L检验显示本模型拟合优度较高(P=0.234);风险预测模型预测发生慢/无复流的ROC曲线下面积为0.687(95%CI:0.619~0.754,P<0.01),最佳界点为-2.396,敏感度为0.828,特异度为0.507。结论年龄、心率、再灌注时间、置入支架数是STEMI患者直接PCI中发生慢/无复流的独立危险因素;基于危险因素建立的风险预测模型具有一定的预测效度和较高的敏感度。
Objective To investigate the risk factors of slow/no-reflow during direct percutaneous coronary intervention(PCI)in patients with acute ST-segment elevation myocardial infarction(STEMI),establish a risk prediction model,and guide clinical practice.Methods A total of 585 STEMI patients who were hospitalized in the Department of Cardiology,Liuzhou People's Hospital from January 2015 to October 2018 were enrolled in the research.They were divided into slow/no-reflow group(n=64)and normal reflow group(n=521),according to whether slow/no-reflow occurred or not during PCI.Baseline clinical characteristics were compared.The independent risk factors related to slow/no-reflow were selected by multivariate Logistic regression analysis,and the risk prediction model was established based on risk factors.The model was evaluated by Hosmer-Lemeshow(H-L)goodness of fit test and receiver operating characteristic(ROC)curve.Results There was no statistically significant difference between the two groups in gender,history of smoking,hypertension,diabetes mellitus,hyperlipidemia,coronary heart disease,old myocardial infarction(OMI),PCI,systolic blood pressure and diastolic blood pressure at admission,infarction area,incidence rate of Killip pump function grade class≥3,the left main lesion,severe coronary artery lesion counts,troponin I(cTnI),blood glucose,high-sensitivity C-reactive protein(hs-CRP),white blood cell(WBC)count,fasting blood glucose,total cholesterol(TC),low density lipoprotein cholesterol(LDL-C),high density lipoprotein cholesterol(HDL-C),and triglyceride(TG)(P>0.05).However,there was significant different in age,heart rate,reperfusion time,number of stent implantation,and CK-MB at admission between the two groups(P<0.05).Multivariate Logistic regression analysis showed that,after adjusting the influence of other factors,age(OR=1.026,95%CI:1.004-1.050),heart rate(OR=1.023,95%CI:1.003-1.044),time of reperfusion time(OR=1.061,95%CI:1.015-1.108),number of stents placed(OR=1.068,95%CI:1.112-2.327)were independent risk factors of slow/no-reflow(P<0.05).The risk prediction model based on risk factors was Logit P=-6.805+0.026(age)+0.023(heart rate)+0.059(reperfusion time)+0.475(number of stentsplaced).H-L test showed that the goodness of fit of the model was high(P=0.234).The area under ROC curve of risk prediction model in predicting slow/no-reflow was 0.687(95%CI:0.619-0.754,P<0.01),and the best cutoff value,the sensitivity,and the specificity were-2.396,0.828,0.507,respectively.Conclusion Age,heart rate,reperfusion time,and number of stents are independent risk factors of slow/no-reflow in STEMI patients during direct PCI.The risk prediction model based on risk factors has a certain predictive validity and high sensitivity.
作者
李其华
易秋艳
徐广纳
韦红卫
LI Qi-hua;YI Qiu-yan;XU Guang-na;WEI Hong-wei(Department of General Medicine,Liuzhou People’s Hospital,Liuzhou 545006,Guangxi,CHINA)
出处
《海南医学》
CAS
2023年第2期176-180,共5页
Hainan Medical Journal
基金
广西壮族自治区卫生健康委员会自筹经费科研项目(编号:Z20190141)。
关键词
急性ST段抬高型心肌梗死
经皮冠状动脉介入术
慢/无复流
危险因素
风险预测模型
构建
Acute ST-segment elevation myocardial infarction
Percutaneous coronary intervention
Slow/no-reflow
Risk factors
Risk prediction model
Construction