摘要
基于广田双线性法,将(3+1)维Korteweg-de-Vries(KdV)方程化为双线性形式。然后利用试探函数法与符号计算系统Mathematica得到了该方程的lump解、有理函数新解以及由指数函数、三角函数、双曲函数、分式函数和对数函数的复合新解。通过选取适当的参数,画出一部分精确解的图形解释其性质。
Firstly, the(3+1) dimensional Korteweg de Vries(KdV) equation is transformed into bilinear form based on Hirota bilinear method. And then, the lump solution, the new solution of rational function and the composite new solution of exponential function, trigonometric function, hyperbolic function, fractional function and logarithmic function of the equation are obtained by using the trial function method and the symbolic computing system Mathematica. Finally, some graphs of exact solutions are drawn to explain their properties through selecting appropriate parameters.
作者
冀敏杰
套格图桑
JI Min-jie;Taogetusang(College of Mathematics Science,Inner Mongolia Normal University,Hohhot 010022,China;Inner Mongolia Center for Applied Mathematics,Hohhot 010022,China)
出处
《内蒙古师范大学学报(自然科学汉文版)》
CAS
2023年第1期102-110,共9页
Journal of Inner Mongolia Normal University(Natural Science Edition)
基金
国家自然科学基金资助项目(11361040)
内蒙古自治区自然科学基金资助项目(2020LH01008)
内蒙古师范大学基本科研业务费专项资金资助项目(2022JBZD011)
内蒙古师范大学研究生科研创新基金资助项目(CXJJS20089)。
关键词
广田双线性法
试探函数法
(3+1)维KdV方程
复合函数解
Hirota bilinear method
trial function method
(3+1)dimensional KdV equation
compound function solution