期刊文献+

基于梯度正则化与自适应可信度的二阶PDE去噪模型

A Second-Order PDE Denoising Model Based on Gradient Regularization and Adaptive Credibility
下载PDF
导出
摘要 针对抑制图像过程中出现边缘模糊的问题,提出一种基于梯度正则化与自适应可信度的二阶偏微分图像去噪模型。首先,针对现有的二阶偏微分方程(Partial Differential Equation,PDE)去噪模型的缺点,提出一个新的扩散函数。该模型能够根据图像局部特征的差异来调整图像扩散系数。其次,针对二阶PDE模型的保真项系数的特点,将保真项的系数由常数转变为函数,以达到平衡平滑区域和纹理区域的效果。最后,利用模型实现图像去噪的数值。仿真实验结果表明,改进的二阶PDE模型在去噪的同时较好地保留了图像的纹理细节,是一种有效的去噪算法。 Aiming at the problem of blurred edge information in the process of suppressing image noise, this paper proposes an image denoising method based on an improved second-order partial differential model. Firstly, a new diffusion function is proposed to overcome the shortcomings of existing second-order Partial Differential Equation(PDE)denoising models. The model can adjust the image diffusion coefficient according to the difference of image local features.Next, according to the characteristics of the fidelity term coefficients of the second-order PDE model, the fidelity term coefficients are transformed from constants to functions to achieve the effect of balancing smooth regions and texture regions. The simulation results show that the improved PDE model is a more effective algorithm.
作者 赵清梦 王鹏飞 徐霞 ZHAO Qingmeng;WANG Pengfei;XU Xia(Chengdu University of Technology,Chengdu Sichuan 610059,China)
机构地区 成都理工大学
出处 《信息与电脑》 2022年第19期192-194,共3页 Information & Computer
关键词 梯度正则化 偏微分方程(PDE) 图像去噪 扩散系数 gradient regularization Partial Differential Equation(PDE) image denoising diffusion coefficient
  • 相关文献

参考文献4

二级参考文献41

  • 1张红英,彭启琮.全变分自适应图像去噪模型[J].光电工程,2006,33(3):50-53. 被引量:45
  • 2PERONA P, MALI J. Scale-space and edge detection using anisotropic diffusion[ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12 (7) : 629- 639.
  • 3CATTE F, LIONS P L, MOREL J M, et al. Image selective smoothing and edge detection by nonlinear diffusion [J]. SIAM J,1992,29 (1):182-193.
  • 4RUDIN L, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms [ J ]. Physica D, 1992,60(14) :259-268.
  • 5CHANT F, ESEDOGLU S. Aspects of total variation regularized L1 function approximation [ J ]. SIAM Journal on Applied Mathematics ,2005,65 ( 5 ) : 1817-1837.
  • 6BING S. Topics in variational PDE image segmentation, inpainting and denoising[D]. USA:University of California Los Angeles ,2003.
  • 7BLOMGREN P V. Col or TV: Total variation method for restoration of vector2 valued Images [ D ]. Angeles : UCLA, 1998.
  • 8GILBOA G, YEHOSHUA Y, ZEEVI, et al. Texture preserving variational denoising using an adaptive fidelity term[ C]//In Conjunction with the 9th IEEE International Conference in Computer Vision, 2003. France : IEEE Press, 2003: 137-144.
  • 9FU S, ZHANG C. Adaptive non-convex total variation regularisation for image restoration [ J ]. Electronics Letters ,2010,46 ( 13 ) :907-908.
  • 10朱立新,王平安,夏德深.引入耦合梯度保真项的非线性扩散图像去噪方法[J].计算机研究与发展,2007,44(8):1390-1398. 被引量:13

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部