期刊文献+

基于智能手机的行人路网坡度属性检测

Slope Attribute Detection of Pedestrian Network Using Smartphones
原文传递
导出
摘要 由于现有行人路网的基础数据中缺失属性信息,造成行人导航无法满足个性化需求,影响了行人出行的舒适度与安全性。将路网分为平路与坡路两类,提出了一种基于智能手机的行人路网坡度属性检测方法。首先,基于智能手机传感器数据,采用机器学习算法实现对坡度属性的检测。其次,通过数据融合与地图匹配,得到带有属性信息的行人路网数据。最后,对该数据投票与修正并进行可视化。方法最终达到了97.3%的属性检测精度,表明了本文方法的有效性。所得路网数据可为个性化导航提供数据基础。 Due to the lack of attribute information in the existing basic data of pedestrian network,pedestrian navigation can’t meet the personalized needs,which affects travel comfort and safety.In this paper,the road network is divided into flat road and slope road.In addition,a method of detecting slope attribute of pedestrian road network based on smartphone is proposed.Firstly,machine learning algorithm is used to detect the slope attribute based on the sensor data.Secondly,,the pedestrian network data with attribute information is obtained through data fusion and map matching.Finally,the data is processed with voting and correction and the results are visualized.The detection accuracy achieves97.3%,which proves the effectiveness of the proposed method.What’s more,the obtained road network data can provide data basis for personalized navigation.
作者 雷霞 周宝定 LEI Xia;ZHOU Baoding(Zhuhai Institute of Urban Planning&Design,Zhuhai 519000,China;College of Civil and Transportation Engineering,Shenzhen University,Shenzhen 518060,China;Institute of Urban Smart Transportation&Safety Maintenance,Shenzhen University,Shenzhen 518060,China;Guangdong Key Laboratory of Urban Informatics,Shenzhen University,Shenzhen 518060,China)
出处 《测绘地理信息》 CSCD 2022年第6期65-69,共5页 Journal of Geomatics
基金 国家自然科学基金(41701519) 深圳市科技计划项目(JCYJ20180305125058727) 广东省自然科学基金面上项目(2019A1515011910)。
关键词 行人路网 属性检测 机器学习 智能手机 pedestrian network attribute detection machine learning smartphone
  • 相关文献

参考文献4

二级参考文献45

  • 1周成虎.全空间地理信息系统展望[J].地理科学进展,2015,34(2):129-131. 被引量:166
  • 2周晓青,孙立军.国际平整度指数与行驶车速的关系[J].同济大学学报(自然科学版),2005,33(10):1323-1327. 被引量:30
  • 3马荣贵,沙爱民,宋宏勋.路面车辙多路传感器检测误差分析[J].长安大学学报(自然科学版),2007,27(3):34-36. 被引量:18
  • 4Harle R. A Survey of Indoor Inertial Positioning Systems for Pedestrians[J]. IEEE Communications Surveys & Tutorials, 2013, 15(3): 1 281-1 293.
  • 5Alvarez J C, Alvarez D, Lopez A,et al. Pedestrian Navigation Based on a Waist worn Inertial Sensor [J]. Sensors, 2012, 12(8): 10 536-10 549.
  • 6Bird J, Arden D. Indoor Navigation with Foot- mounted Strapdown Inertial Navigation and Mag- netic Sensors[J]. IEEE Wireless Communications,2011, 18(2): 28-35.
  • 7Park K, Shin H, Cha H. Smartphone-based Pedes trian Tracking in Indoor Corridor Environments[J]. Personal and Ubiquitous Computing, 2013,17 (2) : 359-370.
  • 8Wang H, Sen S, Elgohary A, et al. No Need to War Drive.. Unsupervised Indoor Localization [C]. The 10th International Conference on Mobile Sys- tems, Applications, and Services, Low Wood Bay, United Kindom, 2012.
  • 9Gusenbauer D, Isert C, Krosche J. Self-contained Indoor Positioning on Off the-Shelf Mobile Devices [C]. 2010 International Conference on Indoor Posi- tioning and Indoor Navigation, Zurich, Switzerland, 2010.
  • 10Link J, Smith P, Wehrle K. Footpath: Accurate Map-based Indoor Navigation Using Smartphones [C]. 2011 International Conference on IndoorPosi- tioning and Indoor Navigation, Guimaraes, Portu- gal, 2011.

共引文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部