期刊文献+

单晶硅表面纳米结构润湿行为的分子动力学模拟

Molecular dynamics simulation of the wetting behavior of nanostructures on the surface of monocrystalline silicon
下载PDF
导出
摘要 通过在单晶硅100晶面上去除不同数量的硅原子,构建出不同形貌的表面纳米结构以及二级结构;同时,采用分子动力学模拟的技术,研究单晶硅不同表面纳米结构润湿行为。模拟结果得出,具有纳米结构的单晶硅表面疏水性优于平整单晶硅表面。经过模拟,未去除硅原子的单晶硅结构表观接触角为72.02,呈亲水性;光栅结构表观接触角为103.45,方柱结构表观接触角为123.17,梯形结构表观接触角为150.4,二级结构表观接触角为152.25,其中二级结构的疏水性能最优。此外,具有纳米结构的单晶硅粗糙表润湿行为更为接近于Cassie-Baxter模型,接触模式为空气柱模型。 The nanostructures and secondary structures of different surface are constructed by removing different numbers of unit cells on the 100 crystal surface of monocrystalline silicon. At the same time, the molecular dy-namics simulation technology is used to study the wetting behavior on different surface of nanostructures on monocrystalline silicon. The simulation results show that the surface hydrophobicity of nano-structured monocrystalline silicon is better than that of smooth monocrystalline silicon. After simulation, the contact angle of the smooth structure is 72.02, which is hydrophilic;the contact angle of the grating structure is 103.45, the contact angle of the square column array structure is 123.17, the contact angle of the trapezoidal structure is 150.4, and the contact angle of the secondary structure is 152.25, and the hydrophobic properties of the secondary structure are the best. In addition, the wetting behavior of the nano-structured silicon surface is closer to that of the Cassie-Baxter model and the contact mode is an air column model.
作者 王浩杰 曹自洋 张洋精 朱译文 WANG Haojie;CAO Ziyang;ZHANG Yangjing;ZHU Yiwen(School of Mechanical Engineering,SUST,Suzhou 215009,China)
出处 《苏州科技大学学报(工程技术版)》 2022年第4期68-73,共6页 Journal of Suzhou University of Science and Technology(Engineering and Technology Edition)
基金 国家自然科学基金项目(51905363) 江苏省中外合作办学平台联合科研项目(2019-21)。
关键词 单晶硅 疏水性 分子动力学 纳米表面结构 monocrystalline silicon hydrophobicity molecular dynamics nano-structure surface
  • 相关文献

参考文献4

二级参考文献50

  • 1T. Her, R. J. Finlay, C. Wu et al.. Microstructuring of silicon with femtosecond laser pulses[J]. Appl. Phys. Lett., 1998, 73(12): 1673~1675.
  • 2M. Stubenrauch, M. Fischer, C. Kremin et al.. Black silicon-new functionalities in microsystems[J]. J. Micromech. Microengng., 2006, 16(6): S82~S87.
  • 3A. Serpengüzel, A. Kurt, I. Inan et al.. Luminescence of black silicon[J]. J. Nanophoton., 2008, 2(2): 021770.
  • 4H. Yuan, V. E. Yost, M. R. Page et al.. Efficient black silicon solar cell with a density-graded nanoporous surface: optical properties, performance limitations, and design rules[J]. Appl. Phys. Lett., 2009, 95(12): 123501.
  • 5Z. Huang, J. E. Carey, M. Liu et al.. Microstructured silicon photodetector[J]. Appl. Phys. Lett., 2006, 89(3): 033506.
  • 6C. Wu, C. H. Crouch, L. Zhao et al.. Visible luminescence from silicon surfaces microstructured in air[J]. Appl. Phys. Lett., 2002, 81(11): 1999~2002.
  • 7C. H. Crouch, J. E. Ccarey, M. Shen et al.. Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation[J]. Appl. Phys. A, 2004, 79(7): 1635~1641.
  • 8Y. Peng, Y. Wen, D. S. Zhang et al.. Optimal proportional relation between laser power and pulse number for the fabrication of surface-microstructured silicon[J]. Appl. Opt., 2011, 50(24): 4765~4768.
  • 9C. H. Crouch, J. E. Carey, J. M. Warrender et al.. Comparson of structure and properites of femtosecond and nanosecond laser structured silicon[J]. Appl. Phys. Lett., 2004, 84(11): 1850~1852.
  • 10J. Zhu, Y. Shen, W. Li et al.. Effect of polarization on femtosecond laser pulses structuring silicon surface[J]. Appl. Surf. Sci., 2006, 252(8): 2752~2756.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部