期刊文献+

优化VMD与CNN在齿轮箱故障诊断应用研究 被引量:6

Research on Gearbox Fault Diagnosis Method based on Parameter Optimized VMD and CNN
下载PDF
导出
摘要 针对齿轮箱的故障诊断的优化问题,提出了一种基于参数优化的变分模态分解(VMD)与卷积神经网络(CNN)相融合的故障诊断方法。该算法首先通过鲸鱼优化算法对VMD算法进行优化,之后通过正交实验法与粒子群优化算法进行了CNN模型中的重要参数进行优化,最后将分解后得到的固有模态分量输入CNN模型中进行训练学习。诊断完成后得到训练与检测结果,其中经过算法优化后CNN模型的训练与检测准确率可达98.7%与95.7%,优于未优化的准确率94.3%与91.8%。通过对结果的分析验证出该算法的可行性以及在诊断成功率方面的优越性,实现了故障特征信息的自适应性提取,并将故障类型进行分类,最终实现齿轮箱故障诊断的智能化。 Aiming at the optimization problem of gearbox fault diagnosis, a fault diagnosis method based on parameter optimization of variational mode decomposition(VMD) and convolutional neural network(CNN) is proposed. Firstly, the VMD algorithm is optimized by whale optimization algorithm. Then, the important parameters of CNN model are optimized by orthogonal experiment and particle swarm optimization algorithm. Next, the decomposed natural mode components are input into CNN model for training.After the diagnosis, the training and detection results are obtained. After the algorithm optimization, the training and detection accuracy of CNN model can reach 98.7% and 95.7% respectively, which is better than the non optimization accuracy of 94.3% and91.8%. Through the analysis of the results, the feasibility of the proposed method and the superiority in the success rate of diagnosis are verified. The adaptive extraction of fault feature information is realized, and the fault types are classified. Finally, the intelligent fault diagnosis on gearboxis realized.
作者 郗涛 杨威振 XI Tao;YANG Weizhen(School of Mechanical Engineering,Tiangong University,Tianjin 300387,China)
出处 《机械科学与技术》 CSCD 北大核心 2022年第12期1829-1838,共10页 Mechanical Science and Technology for Aerospace Engineering
基金 国家科技重大专项子课题(2019zx04055-001-014)。
关键词 齿轮箱 故障诊断 变分模态分解 卷积神经网络 gearbox fault diagnosis variational mode decomposition convolutional neural network
  • 相关文献

参考文献7

二级参考文献54

共引文献183

同被引文献62

引证文献6

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部