期刊文献+

低掺杂石墨烯对聚氨酯弹性体的增强作用 被引量:2

Reinforcement of PUE by low-doped GN
下载PDF
导出
摘要 采用预聚体法,以聚环氧丙烷醚二醇、4,4-二苯基甲烷二异氰酸酯、1,4-丁二醇为原料,羧甲基纤维素钠改性的电化学法石墨烯(GN)为填料,制备了聚氨酯弹性体(PUE)/GN复合材料,并对PUE/GN复合材料进行了测试与表征。结果表明:GN在PUE基体中分散良好,与基体的相容性良好;与PUE相比,PUE/GN复合材料的热性能、力学性能显著提高,当掺杂0.10%(w)的GN时,PUE/GN复合材料的拉伸强度和撕裂强度分别达到38.64 MPa,97.79 kN/m,质量损失5%时的温度提高20℃。 Poly(propylene oxide ether glycol),4,4-diphenylmethane diisocyanate,1,4-butanediol were used as raw materials,electrochemical graphene(GN)modified by sodium carboxymethyl cellulose as filler to prepare polyurethane elastomer(PUE)/GN composites via a prepolymer method.The PUE/GN composites were characterized.The results show that GN is dispersed evenly in PUE matrix and compatible well with the matrix.The thermal properties and mechanical propeties of the composites are significantly improved.When the mass fraction of graphene doped is 0.10%(w),the tensile strength and tear strength of the composites reach 38.64 MPa and 97.79 kN/m,respectively,and the temperature is increased by 20℃when the mass loss is 5%.
作者 陈乾 李晓云 赵雨花 亢茂青 王军威 Chen Qian;Li Xiaoyun;Zhao Yuhua;Kang Maoqing;Wang Junwei(Laboratory of Applied Catalysis and Green Chemical Engineering,Institute of Coal Chemistry,Chinese Academy of Sciences,Taiyuan 030001,China;School of Chemical Engineering,University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《合成树脂及塑料》 CAS 北大核心 2023年第1期21-25,共5页 China Synthetic Resin and Plastics
基金 山西省青年基金(201901D211586) 国家自然科学基金(52003286) 兰州市科技计划项目(2020-2-2) 山西省重大科技项目(20181101012)。
关键词 石墨烯 聚氨酯弹性体 力学性能 低掺杂 热稳定性 graphene polyurethane elastomer mechanical property low doping thermal stability
  • 相关文献

参考文献3

二级参考文献40

  • 1Blanchard A F, Naunton W J. Applied Science of Rubber [M]. London: Edward Armold, 1961.
  • 2Bueche F. Reinforcement of Elastomer [M]. New York: Interscience Publisher, 1965.
  • 3Boonstra B B. Mixing of carbon black and polymer: Interaction and reinforcement [J]. J Appl Polym Sci, 1969, 11 (3) : 389-406.
  • 4Smith T L. Ultimated tensile properties of elastomers Ⅴ: Rapture in constrained biaxial tensions [ J ]. J Polym Sci: Polym Phys, 1969, 27(4): 675-685.
  • 5藤本邦彦.ゴムの不均匀构造と破坏たふびに疲劳现象[J].日本ゴム协会志,1964,37(8):602-615.
  • 6Kaufman S J. Nuclear magnetic resonance study of rubbercarbon black interaction [J]. Rubber Chem Technology, 1971, 44(3) : 843-844.
  • 7Brien J O. An NMR investigation of interaction between carbon black and cispolybutidene [J]. Rubber Chem Technology, 1977, 50(4) :747-764.
  • 8Mullin L, Tobin N R. Stress softing in rubber vulcanizates Ⅰ: Use of stain-amplication factor to describe the elastic behavior of filler-reinforced vulcanizated rubber[J]. J Appl Polym Sci, 1965, 9(9) : 2993-3009.
  • 9Gerspacher M, Farrell O, Charles P, et al. A proposed mechanism for the reinforcement of elastomers in the rubbery plateau by carbon black[J]. Kautsch Gummi Kunstst, 1994, 47(5) : 349-353.
  • 10Gerspacher M, Farrell O, Charles P, et al. Modeling of the carbon black reinforcement mechanism in elastomers [J]. Rubber World, 1996, 214(3) : 27-30.

共引文献27

同被引文献20

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部