期刊文献+

Quantum-Inspired Distributed Memetic Algorithm

原文传递
导出
摘要 This paper proposed a novel distributed memetic evolutionary model,where four modules distributed exploration,intensified exploitation,knowledge transfer,and evolutionary restart are coevolved to maximize their strengths and achieve superior global optimality.Distributed exploration evolves three independent populations by heterogenous operators.Intensified exploitation evolves an external elite archive in parallel with exploration to balance global and local searches.Knowledge transfer is based on a point-ring communication topology to share successful experiences among distinct search agents.Evolutionary restart adopts an adaptive perturbation strategy to control search diversity reasonably.Quantum computation is a newly emerging technique,which has powerful computing power and parallelized ability.Therefore,this paper further fuses quantum mechanisms into the proposed evolutionary model to build a new evolutionary algorithm,referred to as quantum-inspired distributed memetic algorithm(QDMA).In QDMA,individuals are represented by the quantum characteristics and evolved by the quantum-inspired evolutionary optimizers in the quantum hyperspace.The QDMA integrates the superiorities of distributed,memetic,and quantum evolution.Computational experiments are carried out to evaluate the superior performance of QDMA.The results demonstrate the effectiveness of special designs and show that QDMA has greater superiority compared to the compared state-of-the-art algorithms based on Wilcoxon’s rank-sum test.The superiority is attributed not only to good cooperative coevolution of distributed memetic evolutionary model,but also to superior designs of each special component.
出处 《Complex System Modeling and Simulation》 2022年第4期334-353,共20页 复杂系统建模与仿真(英文)
基金 the National Natural Science Foundation of China(No.62273193) the Talent Introducing Project of Hebei Agricultural University(Nos.KY201903 and YJ201953).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部