摘要
采用立方孔模型建立泡沫金属流道的三维PEMFC几何模型,并与直流道PEMFC模型进行对比分析,其次研究泡沫金属孔隙率对PEMFC反应气体压力分布、反应气体摩尔分数分布以及极化曲线的影响,在此基础上对泡沫金属流道孔隙率分层和孔隙率梯度进行研究。研究结果表明:与直流道相比,泡沫金属流道PEMFC峰值功率密度提高了23.9%;增大泡沫金属流道的孔隙率,可减小氧气的流动阻力,提高PEMFC的输出性能;增大泡沫金属流道沿气体流动方向或厚度方向的分层数量均能够提高PEMFC的峰值功率密度,并且沿厚度方向的分层方案效果更佳;泡沫金属流道沿厚度方向采用孔隙率梯度设计能够明显提高PEMFC的输出性能。当孔隙率梯度k=5%时,PEMFC的峰值功率密度为0.913 W/cm^(2),比k=0时提高了3.87%。
The three-dimensional geometric model of PEMFC including the foam metal flow channel was established based on the cubic hole model and compared with the straight flow channel.Then,the effects of the foam metal porosity on the pressure distribution and the mole fraction distribution of reaction gas were analyzed,and the polarization curve of PEMFC were also studied.On this basis,the stratification and gradient of foam metal porosity were researched.The results show that the peak power density of PEMFC including foam metal flow channel increases by 23.9%compared with the straight flow channel.The flow resistance of oxygen can be reduced and the output performance of PEMFC can be improved with the increase of the foam metal porosity.The peak power density of PEMFC can be enhanced by increasing the number of foam metal layers along with the gas flow direction or the thickness direction,but the effect when foam metal layers are along with the thickness direction is better.The output performance of PEMFC can be significantly improved when the porosity gradient is along with the thickness direction of foam metal flow channel.When the porosity gradient k is equal to 5%,the peak power density of PEMFC is 0.913 W/cm^(2),which is 3.87%higher than that when k is equal to 0.
作者
孙峰
苏丹丹
殷宇捷
庞彬
董小平
李志远
SUN Feng;SU Dandan;YIN Yujie;PANG Bin;DONG Xiaoping;LI Zhiyuan(School of Quality and Technical Supervision,Hebei University,Baoding 071000,China;Hebei Technology Innovation Center for Lightweight of New Energy Vehicle Power System,Baoding 071000,China)
出处
《中南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2022年第12期4617-4626,共10页
Journal of Central South University:Science and Technology
基金
国家自然科学基金资助项目(51902081)
河北省自然科学基金资助项目(E2021201032)
保定市科技计划项目(2074P019)
河北大学校长基金资助项目(XZJJ202003)。
关键词
质子交换膜燃料电池
泡沫金属
孔隙率
传质特性
电流密度
proton exchange membrane fuel cell
foam metal
porosity
mass transfer characteristics
current density