摘要
A conductive,elastic,and biocompatible hybrid network hydrogel was prepared by cross-linking of locust bean gum,polyvinyl alcohol,and carbon nanotubes,yielding a rough top surface and smooth bottom surface.The merging of the two pieces of hydrogel flat face to flat face forms a highly elastic hydrogel with double-rough surfaces.A piezoresistive sensor assembled with the double-rough surface hydrogel sandwiched between two carbon cloth electrodes exhibits a high sensitivity(20.5 kPa^(-1),0-1kPa),a broad detection range(0.1-100 kPa)and a reliable response for 1000 cycles.The rough contact area between the hydrogels and the carbon cloth is found critical in achieving ultra-high sensitivities in the low-pressure range.Moreover,further monolithic integration of the sensor with a flexible solid-state zinc ion battery ensures the self-powering of the sensor for various human motions detection applications.
基金
supported by the National Natural Science Foundation of China (No.62101605)
the Shenzhen Science and Technology Innovation Committee (No.JCYJ20190806145609284)
the Fundamental Research Funds for the Central Universities,Sun Yat-sen University (Grant No.22qntd1501).