摘要
永久散射体(PS)和小基线集(SBAS)InSAR时序分析技术能够克服传统差分干涉雷达受时空和环境影响的缺陷,被认为是监测微小形变的重要技术手段,而针对这两种方法的适用性仍需进一步研究分析。本文以雄安新区为研究区,选取覆盖研究区的30景ENVISAT ASAR数据,分别采用PS-InSAR和SBAS技术对其地表沉降情况进行长时间序列监测,获取了2005年3月~2010年8月期间雄安新区年地表平均沉降速率,并对比分析两种技术在城区和非城区的监测表现。研究结果表明,PS-InSAR与SBAS-InSAR技术都监测出研究区北部呈现下沉趋势,研究区南部都呈现出抬升趋势,监测结果具有较好的空间一致性,并且两种技术获得的形变速率具有较高的相关性(R^(2)=0.87),因此,两种技术均能有效监测地表的沉降变化。两种方法获得的监测点数目在城区差异较小,而在非城区存在较大差异。相比PS-InSAR技术,SBAS-InSAR能够在非城区获得更多的监测点,更适用于非城区的地表形变监测。
The Permanent Scatterer(PS) and Small Baseline Set(SBAS) InSAR are important methods for monitoring small deformations, and they overcome the shortcomings of traditional differential SAR interferometer such as time and space decorrelation, and environmental influences. This article takes deformation monitoring of Xiong’an New Area as an example, selects 30 scenes of ENVISAT ASAR data which acquired from March 2005 to August 2010, and uses PS-InSAR and SBAS technology to obtain long-term time series of its surface subsidence, The ground subsidence rates of the two InSAR technologies in urban and non-urban areas are compared and analyzed. The results show that both PS-InSAR and SBAS-InSAR technologies detect a sinking trend the northern part and a rising trend in the southern part. The monitoring results have a good spatial consistency, and the deformation rates obtained by the two technologies have a high correlation(R^(2)=0.87). Therefore, both techniques can effectively monitor the change of surface subsidence. The difference in deformation rates of monitoring points obtained by the two methods is small in urban areas and large in non-urban areas. Compared with PS-InSAR technology, SBAS-InSAR can obtain more monitoring points in non-urban areas and is more suitable for non-urban surface deformation monitoring.
作者
柳新强
姜刚
刘军峰
贺国伟
Liu Xinqiang;Jiang Gang;Liu Junfeng;He Guowei(Shanxi Railway Institute,Weinan 714099,China;College of Geology Engineering and Geomatics,Chang'an University,Xi'an 710054,China)
出处
《工程勘察》
2023年第1期62-67,共6页
Geotechnical Investigation & Surveying
基金
陕西铁路工程职业技术学院科研基金项目(KY2020-53)。