期刊文献+

备选辅助燃料蔗糖的超临界水氧化工艺参数研究

Research on Supercritical Water Oxidation Process Parameters of Alternative Auxiliary Fuel Sucrose
下载PDF
导出
摘要 针对超临界水氧化装置启动过程耗能较大的问题,可选用辅助燃料进行设备升温。对备选燃料蔗糖进行了试验研究,考察了蔗糖最低反应温度、蔗糖溶液质量分数,控制不同反应温度、反应压力、氧气系数等因素,研究了各参数对蔗糖去除率的影响。试验结果表明:蔗糖最低反应温度为283.5℃、蔗糖质量分数为45%,优化工艺条件为反应温度450~500℃、反应压力22.5 MPa、过氧系数150%,此时蔗糖去除率达99.5%。采用蔗糖作为超临界水氧化的辅助燃料具有点火温度低、氧化效果完全、对后续处理其他有机物无影响的优势。 To address the problem of high energy consumption during the start-up of the supercritical water oxidation plant, an auxiliary fuel was selected to warm up the plant to reach the appropriate temperature. The sucrose as alternative fuel was investigated in a pilot study. The minimum reaction temperature of sucrose and the mass fraction of sucrose solution were investigated, and the effect of each parameter on the removal rate of sucrose was studied by controlling different reaction temperatures, reaction pressures and oxygen coefficients. The experimental results showed that the minimum reaction temperature of sucrose was 283.5 ℃, sucrose mass fraction was 45%, and the optimized process conditions were as follows: temperature 450~500 ℃, reaction pressure 22.5 MPa and oxygen coefficient 150%, at which time the sucrose removal rate reached 99.5%. The use of sucrose as an auxiliary fuel for supercritical water oxidation had the advantage of low ignition temperature and complete oxidation effect without effect on the subsequent treatment of other organics.
作者 尹文续 刘忠浩 焦钰涵 张茜哲 张振涛 YIN Wen-xv;LIU Zhong-hao;JIAO Yu-han;ZHANG Xi-zhe;ZHANG Zhen-tao(China Institute of Atomic Energy,Beijing 102413,China)
出处 《当代化工》 CAS 2022年第12期2773-2776,2792,共5页 Contemporary Chemical Industry
基金 国家国防科技工业局后处理科研项目,有机溶剂蒸残液超临界水氧化技术研究(项目编号:BG17102211)。
关键词 超临界水氧化 加热模式 辅助燃料 蔗糖 COD 有机物去除 Supercritical water oxidation Heating mode Auxiliary fuel Sucrose COD Organic matter removal
  • 相关文献

参考文献2

二级参考文献131

  • 1Bambang VERIANSYAH,Jae-Duck KIM,Youn-Woo LEE.Decomposition kinetics of dimethyl methylphospate(chemical agent simulant) by supercritical water oxidation[J].Journal of Environmental Sciences,2006,18(1):13-16. 被引量:2
  • 2Takahashi Y T,Wydeven T,Koo C,1988.Subcritical and supercritical water oxidation of CELSS model wastes[J].Advances in Space Research,9:99-110.
  • 3Tateishi M,Tsuchiyama Y,Yamauchi Y et al.,2000.PCB decompositon process[P].USA Patent 6 162 958.
  • 4Tester J W,Holgate H R,Armellini F J et al.,1993.Supercritical water oxidation technology:a review of Process Development and Fundamental Research[M].In:Emerging technologies in hazardous waste management Ⅲ (Tedder D.W.,Pohland F.G.,ed.).Washington,DC:American Chemical Society.Chapter 3.
  • 5Tester J W,Cline J A,1999.Hydrolysis and oxidation in sub-and supercritical water:connection process engineering science to molecular interactions[J].Corrosion,55(11):1088-1100.
  • 6Thomason T B,Modell M,1984.Supercritical water destruction of aqueous wastes[J].Hazardous Waste,1(4):453-467.
  • 7Cohen L S,Jensen D,Lee G et al.,1998.Hydrothermal oxidation of navy excess hazardous materials[J].Waste Management,18:539-546.
  • 8Cooper S P,Folster H G,Gairns S A et al.,1997.Treatment of lagoon sludge,primary clarifier sludge,and bleach plant effluent by supercritical water oxidation[J].Pulp & Paper-Canada,98(10):37-41.
  • 9Crooker P J,Ahluwalia K S,Fan Z,2000.Operating results from supercritical water oxidation plants[J].Industrial & Engineering Chemistry Research,39:4865-4870.
  • 10Daman E L,1996.Process and apparatus for supercritical water oxidation[P].USA Patent 5 571 423.

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部