期刊文献+

社交知识图谱研究综述 被引量:7

A Survey of Social Knowledge Graph
下载PDF
导出
摘要 作为通用的知识结构化表示形式,知识图谱被成功应用于医疗、金融、安全等领域.社交知识图谱是一种以人为中心的知识图谱,其融合了动态演化的社交知识.作为知识图谱概念的延伸,社交知识图谱涵盖人、物、事、地等异质信息及其复杂关联;由于其融入了来自社交网络的强时效性知识,能够准确地描述人员的即时状态及其演化趋势,被广泛应用于推荐系统、社交分析等以人为中心的应用中.当前,社交知识图谱的相关工作不断涌现,但缺乏统一的形式化定义以及系统性的分析.基于此,本文首先梳理了社交知识图谱的相关概念,并给出了社交知识图谱的形式化定义.然后从社交知识图谱的定义出发,对其动态性、异质性、情感性、互演化性等性质进行分析.接下来围绕社交知识图谱的生命周期,梳理了社交知识图谱的构建、融合、表示和推理的相关代表性工作.最后介绍了社交知识图谱的相关应用,并展望了社交知识图谱的未来发展蓝图. Knowledge Graph(KG)has received great attention and has been widely explored since its inception.Recently,there is a trend to introduce social information from Social Network(SN)into KG called Social Knowledge Graph(SKG).SKG is a kind of Knowledge Graph,which is human-centered and dynamic.It contains rich background information from KG and dynamic interaction information about people from SN.Considering that the information complementation of SN and KG can benefit human-oriented applications such as recommendation systems and social analysis.It is essential to propose a unified framework for the integration of SN and KG.However,there is currently no survey focusing on this research trend.In this paper,we introduce the SKG and give a systematic analysis of it.Specifically,we first introduce relevant concepts about SKG,and propose a formal definition of it.Next,we analyze the characteristics of SKG from four perspectives including heterogeneous,dynamic,emotional and coevolutionary.Then,around the life cycle of the SKG,we introduce the relevant representative studies of the SKG construction,representation,integration and reasoning.Finally,we introduce the related applications of SKG,and discuss its valuable future direction.
作者 江旭晖 沈英汉 李子健 王元卓 尹芷仪 沈华伟 JIANG Xu-Hui;SHEN Ying-Han;LI Zi-Jian;WANG Yuan-Zhuo;YIN Zhi-Yi;SHEN Hua-Wei(Data Intelligence System Research Center,Institute of Computing Technology,Chinese Academy of Sciences,Beijing 100190;University of Chinese Academy of Sciences,Beijing 100049;Zhongke Big Data Academy,Zhengzhou 450046)
出处 《计算机学报》 EI CAS CSCD 北大核心 2023年第2期304-330,共27页 Chinese Journal of Computers
基金 国家自然科学基金(U1836206,U21B2046,62172393) 中原英才计划-中原科技创新领军人才项目(204200510002)资助.
关键词 社交知识图谱 社交网络 知识图谱 知识推理 图表示学习 知识抽取 网络融合 social knowledge graph social network knowledge graph knowledge reasoning graph representation learning knowledge extraction graph integration
  • 相关文献

参考文献13

二级参考文献51

  • 1钱刚,曾贵华.典型视频镜头分割方法的比较[J].计算机工程与应用,2004,40(32):51-55. 被引量:29
  • 2许源,薛向阳.一种视频局部高层语义特征提取算法[J].计算机科学,2006,33(11):134-138. 被引量:5
  • 3Sun Y, HanJ. Mining heterogeneous information nelworks: A structural analysis approach [J].ACM SIGKI)D Explorations Newsletter, 2013, 11(2): 20-28.
  • 4Wang C, Samluri V, Parthasarady S. 1.ocal probabilisuc models for link prediction [C] //Proc of the 7th IEEE Im fon Data Mining (ICI)M 2007). l.os Alamhos, CA: IEEE Compmer Society, 2007; 322-331.
  • 5Doppa J R, Yu J, Tadepalli P, et al. Chance constrained programs for link prediedon [C/OL] //Proe of lhe 22nd Neural Information Processing Systems Workshop on Analyzing Networks and Learning with Graphs. 2009: 25-32 [2015-02-01]. http://citeseerx, ist. psu. edu/viewdoc/dnwnload ; jsessionid-- 86F5C6FF7F420367109BE 118514FF3?doi = 10. 1.1.156. 248815,rep replg-type=pdf.
  • 6Lu Z, Savas B, Tang W, et al. Supervised link prediction using muhiple sources [C] //Proc of the 10th IEEE Int Conf on Data Mining (ICDM 2010). Los Alamitos, CA: IEEE Computer Society, 2010:923-928.
  • 7Sun Yizhou, relationship p networks [C]/ / Social Network Alamitos, CA: arber R, Cupta M, et al. Coauthor ediction in heterogeneous bibliographic Proc of the 2011 Int onf on Advances in Analysis and Mining (ASONAM11). Los IEEE Computer Society. 2011 : 121-128.
  • 8Tang .lie, Lou Timcheng, Kieinberg J. Inferring social ties ross heterogenous networks [C] //Proc of the 5th AM Int Conf on Web Search and at Mining. New York: ACM,2012:743-752.
  • 9Jia Yantao. Wang Yuanzhuo. Cheng Xueqi, et al. OpenKN: An open knowledge computational engine for network big data [C] //Proc of the 2014 Int Conf on Advances in Social Networks Analysis and Mining ( ASONAM14 ). Los Alamitos, CA: IEEE Computer Soeiety, 2011:657-661.
  • 10Aggarwal C C, Xie Y. Philip S Y. On dynamic link inference in heterogeneous nelworks [C] //Proc of the 2012 SIAM Int Conf on Data Mining. Philadelphia, PA: SIAM, 2012: 415- 426.

共引文献527

同被引文献97

引证文献7

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部