期刊文献+

Geometrically Nonlinear Flutter Analysis Based on CFD/CSD Methods and Wind Tunnel Experimental Verification

下载PDF
导出
摘要 This study presents a high-speed geometrically nonlinear flutter analysis calculation method based on the highprecision computational fluid dynamics/computational structural dynamics methods.In the proposed method,the aerodynamic simulation was conducted based on computational fluid dynamics,and the structural model was established using the nonlinear finite element model and tangential stiffness matrix.First,the equilibrium position was obtained using the nonlinear static aeroelastic iteration.Second,the structural modal under a steady aerodynamic load was extracted.Finally,the generalized displacement time curve was obtained by coupling the unsteady aerodynamics and linearized structure motion equations.Moreover,if the flutter is not at a critical state,the incoming flow dynamic pressure needs to be changed,and the above steps must be repeated until the vibration amplitude are equal.Furthermore,the high-speed geometrically nonlinear flutter of the wing-body assemblymodel with a high-aspect ratio was investigated,and the correctness of the method was verified using high-speed wind tunnel experiments.The results showed that the geometric nonlinearity of the large deformation of the wing caused in-plane bending to become a key factor in flutter characteristics and significantly decreased the dynamic pressure and frequency of the nonlinear flutter compared to those of the linear flutter.
出处 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1743-1758,共16页 工程与科学中的计算机建模(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部