期刊文献+

基于全监督学习的应急通信网络流量自动控制方法

Automatic Control Method of Emergency Communication Network Flow Based on Full Supervised Learning
下载PDF
导出
摘要 通过分析应急通信网络的流量传输特点,本文设计应急通信网络的流量数据接收与传送缓冲区,通过约束通信网络向客户端传输流量数据的过程,优化应急通信网络缓存机制;利用流量拥塞窗口和启动门限两个参数,计算两个端口之间的数据发送速率,基于应急通信网络吞吐量、时间与通信网络负荷之间的关系,结合全监督学习控制算法,结合流量控制流程设计,优化应急通信网络流量的控制。实验结果表明该方法不仅可以减小应急通信网络的丢包率,还可以提高网络的吞吐率,应急通信网络的性能得到提高。 By analyzing the characteristics of traffic transmission in emergency communication network, the buffer area for receiving and transmitting traffic data in emergency communication network is designed in this paper. The data transmission rate between the two ports is calculated by using the two parameters of the traffic congestion window and the start threshold. Based on the relationship between the emergency communication network throughput, time and the communication network load, combined with the fully supervised learning control algorithm and the flow control process design, the emergency communication network flow control is optimized. The experimental results show that this method can not only reduce the packet loss rate of emergency communication network, but also improve the network throughput, and the performance of emergency communication network is improved.
作者 王琦 黄宗伟 WANG Qi;HUANG Zong-wei(College of mobile communications Guangdong Vocational College of Post and Telecom,Guangzhou 510630 China)
出处 《自动化技术与应用》 2023年第2期94-97,共4页 Techniques of Automation and Applications
基金 2019年广东省普通高校青年创新人才类项目(2019GKQNCX076)。
关键词 全监督学习 应急通信 网络流量 自动控制方法 full supervised learning emergency communication network traffic automatic control method
  • 相关文献

参考文献7

二级参考文献52

  • 1胡振宇,刘在强,苏璞睿,冯登国.基于协议分析的IM阻断策略及算法分析[J].电子学报,2005,33(10):1830-1834. 被引量:5
  • 2李千目,许满武,严悍,张宏.一种网络拥塞预测新方法[J].系统仿真学报,2006,18(8):2101-2104. 被引量:5
  • 3Yang Yue-quan, Cao Zhi-qiang, Tan Min, and Yi Jian-qiang. Fairness and dynamic flow control in both unicast and multicast architecture networks[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and Reviews, 2007, 37(2): 206-212.
  • 4Cho Jeong-Woo and Chong Song. Utility max-min flow control using slope-restricted utility functions[J]. IEEE Transactions on Communications, 2007, 55(5): 963-972.
  • 5Abdulla M S and Bhatnagar S. Network flow-control using asynchronous stochastic approximation[C]. Proceedings of the 46th IEEE Conference on Decision and Control, CDC, New Orleans, USA, December, 2008: 5857-5862.
  • 6Paganini F. A global stability result in network flow control[J]. Systems and Control Letters, 2002, 46(3): 165-172.
  • 7Jin Young-mi and Kesidis G. Charge sensitive and incentive compatible end-to-end window-based control for selfishusers[J]. IEEE Journal on Selected Area in Communications, 2006, 24(5): 952-961.
  • 8Altman E, Basar T, and Srikant R. Nash equilibria for combined flow control and routing in networks: Asymptotic behavior for a large number of users[J]. IEEE Transactions on Automatic Control, 2002, 47(6): 917-930.
  • 9Sahin I and Simaan M A. A flow and routing control policy for communication networks with multiple competitive Users[J]. Journal of the Franklin Institute, 2006, 343(2): 168-180.
  • 10S S Askera. On dynamical multi-team cournot game in exploitation of a renewable resource [J]. Chaos, Solitons & Fractals, 2007, 32(1): 264-268.

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部