期刊文献+

液态压缩二氧化碳储能与火电机组耦合方案研究 被引量:9

Study on coupling scheme of liquid compressed carbon dioxide energy storage system and thermal power unit
下载PDF
导出
摘要 火电机组实现灵活性转型是构建新型电力系统、实现“碳达峰”“碳中和”目标的关键。为提升火电机组的灵活性,提出了小汽轮机驱动和电动机驱动液态压缩二氧化碳储能系统与火电机组耦合的方案,并建立了其热力学系统模型,采用热耗率和能量利用系数对系统进行评价,开展系统热力学性能对比分析,确立了最佳储能耦合方案。研究表明:储能阶段从凝结水泵出口抽取凝结水,吸收压缩热后返回7号低压加热器出口,释能阶段从中压缸排汽抽取蒸汽,加热膨胀后的CO_(2)后返回5号低压加热器疏水冷却器时,耦合系统性能最佳,热耗率比原系统降低了48.308 k J/(k W·h),能量利用系数提升了0.52百分点;改变CO_(2)膨胀机入口温度和质量流量可实现快速变负荷,耦合储能系统后,机组调峰能力增加了17.1%;配置热水罐并最大放热时,机组调峰能力增加了37.4%,提升了火电机组灵活性。 Flexible transformation of thermal power units is the key to build a new power system and achieve the goal of “carbon peak” and “carbon neutrality”. In order to promote the flexibility of thermal power units, the coupling scheme for small steam turbine drive and motor drive liquid compressed carbon dioxide energy storage system and thermal power unit is put forward, and the thermodynamic system model is established. Moreover, the heat consumption rate and energy utilization coefficient are used to evaluate the system, the thermodynamic performance of the system is compared and analyzed, and the optimal coupling scheme of energy storage is established. The researches show that, in the energy storage stage, condensate water is extracted from the outlet of the condensate pump, and the compressed heat is absorbed and returned to the outlet of No.7 low-pressure heater. In the energy release stage, steam is extracted from the exhaust of the middle pressure cylinder, and the expanded CO_(2)is heated and returned to the No.5 low-added hydrophobic cooler, the coupling system has the best performance. The heat consumption rate is 48.308 k J/(k W·h) lower than that of the original system, and the energy utilization coefficient increases by 0.52 percentage point. Changing the inlet temperature and the mass flow rate of CO_(2)expander can quickly change the load. After coupling with the energy storage system, the peak regulation capacity of thermal power unit increases by 17.1%, when the hot water tank is configured and the maximum heat is released, the peak regulation capacity of the unit increases by 37.4%, indicating the flexibility of thermal power unit is improved.
作者 严晓生 王小东 韩旭 韩中合 YAN Xiaosheng;WANG Xiaodong;HAN Xu;HAN Zhonghe(School of Energy,Power and Mechanical Engineering,North China Electric Power University,Baoding 071003,China;CHN Energy Lianjiang Port&Power Co.,Ltd.,Fuzhou 350500,China)
出处 《热力发电》 CAS CSCD 北大核心 2023年第2期90-100,共11页 Thermal Power Generation
基金 河北省自然科学基金项目(E2020502001) 国家科技支撑计划项目(2014BAA06B01)。
关键词 压缩二氧化碳储能 热耗率 热力系统优化 灵活性改造 调峰深度 compressed carbon dioxide energy storage heat loss rate thermodynamic system optimization flexibility transformation peak regulation depth
  • 相关文献

参考文献9

二级参考文献80

  • 1王子琳,鲁玺,庄明浩,张憧宇,陈诗.中国三北地区风—光互补发电系统空间优化研究[J].全球能源互联网,2020,0(1):97-104. 被引量:12
  • 2程时杰,文劲宇,孙海顺.储能技术及其在现代电力系统中的应用[J].电气应用,2005,24(4):1-8. 被引量:132
  • 3陈超,王秀丽,尚建磊,刘铭.中温相变蓄热装置的蓄放热性能研究[J].北京工业大学学报,2006,32(11):996-1001. 被引量:3
  • 4Arsie I, Marano V, Nappi G, et al. A model of a hybrid power plant with wind turbines and compressed air energy storage [ C ]//In Proc. of ASME Power Conference,Chicago,Illinois (USA) ,2005.
  • 5Lund H, Salgi G, Elmegaard B, et al. Optimal operation strategies of compressed air energy storage (CAES) on electricity spot mar- kets with fluctuating prices [ J ]. Appl Therm Eng, 2009 ,'29 ( 5 ) : 799 - 806.
  • 6Cavallo A. Controllable and affordable utility-scale electricity from intermittent wind resources and compressed air energy storage (CAES) [J]. Energy,2007,32(2) :120 - 127.
  • 7Grazzini G, Milazzo A. A thermodynamic analysis of multistage adi- abatic CAES [ J ]. Proceedings of the IEEE, 2012, 100 ( 2 ) : 461 - 472.
  • 8Pickard W F, Hansing N J, Shen A Q. Can large-scale advanced- adiabatic compressed air energy storage be justified economically in an age of sustainable energy [ J ]. Journal of Renewable and Sus-tainable Energy,2009,1 033102.
  • 9Bullough C,Gatzen C,Jakiel C,et 81. Advanced adiabatic compressed air energy storage for the integration of wind energy[ C ]//In Proceed- ings of the European Wind Energy Conference,EWEC,2004.
  • 10Gmzzini G, Milazzo A. Thermodynamic analysis of CAES/TES sys- tems for renewable energy plants[ J]. Renewable Energy,2008,33 (9) :1998 -2006.

共引文献165

同被引文献126

引证文献9

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部