期刊文献+

多目标博弈加权纳什平衡点集的通用稳定性

Generic Stability of Weighted Nash Equilibrium Point Sets in Multi-objective Games
下载PDF
导出
摘要 在多目标博弈加权纳什平衡理论基础下,讨论多目标博弈在向量值支付函数伪连续条件下加权纳什平衡点的存在性结果;构建伪连续向量值支付函数的博弈空间,给出加权纳什平衡点的定义,同时定义多目标博弈的集值映射,并证明集值映射是非空的、凸的、usco映射;应用Fan-Glicksberg不动点定理、Fort定理以及本质平衡点的定义,讨论权向量和支付函数及策略集三者同时扰动下加权纳什平衡点的通有稳定性情况,得出在Baire分类意义下,构造的问题是本质的,也即是多目标博弈的加权纳什平衡点具有通有稳定性。 Based on the theoretical basis of weighted Nash equilibrium in multi-objective games,the existence results of weighted Nash equilibrium points in multi-objective games under the condition that the vector-valued payoff function was pseudo-continuous were discussed.The game space of pseudo continuous vector-valued payment function was constructed,the definition of weighted Nash equilibrium point was given,and the set-valued mapping of multi-objective game was defined,and the set-valued mapping was proved to be non-empty,convex and USCO mapping.By using Fan-Glicksberg fixed point theorem,Fort theorem and the definition of intrinsic equilibrium point,the generic stability of weighted Nash equilibrium point was discussed under simultaneous perturbation of weight vector,payment function and strategy set.It is concluded that in the sense of Baire’s classification,the problem we construct is essential,that is,the weighted Nash equilibrium points in multi-objective games have generic stability.
作者 杨林 丘小玲 YANG Lin;QIU Xiaoling(School of Mathematics and Statistics,Guizhou University,Guiyang 550025,China)
出处 《重庆工商大学学报(自然科学版)》 2023年第1期91-96,共6页 Journal of Chongqing Technology and Business University:Natural Science Edition
基金 国家自然科学基金项目(12061020) 贵州省教育厅科学基金(黔科合KY字[2021]088号) 贵州省科技厅科学基金(黔科合基础[2019]1123号:黔科合-ZK[2021]一般331) 贵州大学引进人才基金(201811).
关键词 多目标博弈 加权纳什平衡点 伪连续 本质解 通有稳定性 multi-objective game weighted Nash equilibrium point pseudo continuity essential solution generic stability
  • 相关文献

参考文献6

二级参考文献56

  • 1张石生.不动点理论及应用[M].重庆:重庆出版社,1985..
  • 2Nash J, Equilibrium point in N-person games, Proc. Nat. Acad Sci. U S A, 1950, 36: 48-49.
  • 3Nash J, Non-cooperative games,Math. Ann., 1951, 54: 286-295.
  • 4Aubin J P, Mathematical methods of game and economic theory, Amsterdam: Revised Edition, NorthHolland, 1982.
  • 5Aubin J P, Optima and equilibria an introduction to nonlinear analysis, New York: Springer Verlag, 1993.
  • 6Tan K K, Yu J, Yuan X Z, Existence theorems of Nash equilibria for noncooperative N-Person games, I J of Game Theory, 1995, 24: 217-222.
  • 7Guillerme J, Nash equilibrium for set-valued maps, J Math. Anal. Appl., 1994, 187: 705-715.
  • 8Yu J, Essential equilibria of n-person noncooperative games, J Math.Economics,1999,31:361-372.
  • 9Klein E, Thomopson A C, Theory of correspondences, New York: Wiley, 1984.
  • 10Aubin J P, Ekeland I., Applied nonlinear analysis, New York: John Wiley and Sons, 1984.

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部