期刊文献+

Ti对WC-10AlCoCrFeNiTi_(x)合金组织及性能影响 被引量:1

Effects of Ti on Microstructure and Mechanical Properties of WC-10AlCoCrFeNiTi_(x) Cemented Carbide
原文传递
导出
摘要 采用机械合金化法制备AlCoCrFeNiTi_(x)高熵合金粉末,通过真空烧结制备WC-10AlCoCrFeNiTi_(x)硬质合金,研究高熵合金粘结相中不同Ti含量对合金微观组织及力学性能的影响。结果表明,随着Ti含量增加,高熵合金粘结相的XRD特征峰向左偏移,WC平均晶粒尺寸减小,合金的强度和硬度增大,硬度(HV_(30))峰值可达2 020,而断裂韧度则表现出先降后升再降的趋势;合金中存在部分Al和Ti的氧化物“黑洞”;Ti含量增加使粘结相硬化,降低其塑性,不利于压制从而导致合金的相对密度下降。 AlCoCrFeNiTi_(x)high-entropy alloy powders were prepared by mechanical alloying method, and WC-10AlCoCrFeNiTi_(x)cemented carbide was fabricated by vacuum sintering. Effects of Ti content in the bonding phase on microstructure and mechanical properties of the cemented carbide were investigated.The results indicate that with the Ti content increasing, the XRD characteristic peaks of the high entropy alloy bonding phase shift to the left, where the average grain size of WC is decreased, the strength and hardness are increased, and peak hardness reaches 2 020 HV, while the fracture toughness is decreased firstly, then increased and finally decreased. “Black holes” of Al and Ti oxides in the cemented carbide were observed.The bonding phase is hardened with Ti content increasing, reducing the plasticity, which is adverse to pressing, leading to the decrease of relative density.
作者 黄丽容 黄必华 谢俊杰 王云 Huang Lirong;Huang Bihua;Xie Junjie;Wang Yun(School of Mechanical and Electrical Engineering,Jiangxi University of Science and Technology;Chongyi Zhangyuan Tungsten Co.,Ltd.)
出处 《特种铸造及有色合金》 CAS 北大核心 2023年第1期50-55,共6页 Special Casting & Nonferrous Alloys
基金 江西省自然科学基金资助项目(20171BAB206030) 赣州市重点研发计划工业领域,创新领军人才计划资助项目(赣市科发[2020]60号)。
关键词 硬质合金 高熵合金粘结相 TI 微观组织 力学性能 Cemented Carbide High Entropy Alloy Bonding Phase Ti Microstructure Mechanical Properties
  • 相关文献

参考文献5

二级参考文献58

  • 1J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau and S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299.
  • 2J.M. Zhu, H.F. Zhang, H.M. , A.M. Wang, H. Li and Z.Q. Hu, J. Alloys Compd. 497 (2010) 52.
  • 3K.B. Zhang, Z.Y. Fu, J.Y.-Zhang, W.M.'Wang, H. Wang, Y.C. Wang, Q.J. Zhang and J. Shi, Mater. Sci. En. A 508 (2009) 214.
  • 4Y.-Zhang, S.G. Ma and J.W. Qiao, Metall. Mater. Trans. A 43 (2012) 2625.
  • 5Y.J. Zhou, Y. Zhang, Y.L. Wang and G.L. Chen, Mater. Sci. Eng. A 454-455 (2007) 260.
  • 6Y.P. Wang, B.S. Li, M.X. Ren, C. Yang and H.Z. Fu, Mater. Sci. Eng. A 491 (2008) 154.
  • 7T.T. Shun and Y.C. Du, J. Alloys Compd. 479 (2009) 157.
  • 8J.M. Zhu, H.M. Fu, H.F. Zhang, A.M. Wang, H. Li and Z.Q. Hu, Mater. Sci. Eng. A 527 (2010) 7210.
  • 9J.W. Qiao, S.G. Ma, E.W. Huang, C.P. Chuang, P.K. Liaw and Y. Zhang, Mater. Sci. Forum. 688 (2011) 419.
  • 10Y.J. Zhou, Y. Zhang, Y.L. Wang and G.L. Chen, Appl. Phys. Lett. 90 (2007) 181904.

共引文献49

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部