摘要
通过在三维矿物载体表面包覆金属-多酚配合物并煅烧实现了Co_(3)O_(4)纳米颗粒的原位负载,制得了易分离回收的负载型Co_(3)O_(4)催化剂,利用SEM、XRD以及XPS表征分析其形貌和微观结构,采用活化过二硫酸盐(PDS)降解药、护品类有机污染物以评价其催化性能。以双酚A为目标污染物,考察了初始pH、PDS浓度、催化剂投加量、共存阴离子(CO_(3)^(2-)、SO_(4)^(2-)、NO_(3)^(-)、Cl^(-))以及腐殖酸(HA)对BPA降解效率的影响。结果表明,负载型Co_(3)O_(4)能有效活化PDS降解有机物,在Co_(3)O_(4)投加量0.075 g·L^(-1),BPA初始浓度0.04 mmol·L^(-1),PDS初始浓度0.4 mmol·L^(-1)以及初始pH=7的最优条件下,120 min内BPA可被完全去除。淬灭实验与EPR实验结果表明,负载型Co_(3)O_(4)活化PDS通过单线态氧(1O2)主导的非自由基途径氧化分解有机物。
Nanosized Co_(3)O_(4)particles were in situ grown on the surface of three-dimensional mineral substrates by calcining surface-coated metal-phenolic coordination polymer. Immobilizing Co_(3)O_(4)nanoparticles on the mineral substrate allows facile separation and recovery. SEM, XRD and XPS were performed to characterize the morphology and microstructure of the immobilized Co_(3)O_(4)nanoparticles. The immobilized Co_(3)O_(4)was applied to active peroxydisulfate(PDS) to degrade pharmaceutical and personal care products in water. The influence of initial pH, PDS concentration, catalyst dosage, inorganic ions(CO_(3)^(2-), SO_(4)^(2-), NO_(3)^(-), Cl^(-)) and humic acid(HA) on organics degradation was systematically investigated by using bis-phenol A(BPA) as a probe contaminant. The results showed that the immobilized Co_(3)O_(4)could effectively active PDS to degrade BPA. Under the optimized conditions with a catalyst dosage of 0.075 g·L^(-1), PDS concentration of 0.4 mM, BPA with initial concentration of 0.04 mM and pH7 was completely removed within 120 min. Chemical scavenging experiments and EPR tests revealed the degradation of BPA followed a nonradical oxidation pathway based on singe oxygen(~1O2).
作者
王棵
王根
杨生炯
金鹏康
WANG Ke;WANG Gen;YANG Shengjiong;JIN Pengkang(School of Environmental and Municipal Engineering,Xi′an University of Architecture and Technology,Xi′an 710055,China;Department of Environmental Science and Engineering,Xi′an Jiaotong University,Xi′an 710049,China)
出处
《环境工程学报》
CAS
CSCD
北大核心
2022年第12期3874-3883,共10页
Chinese Journal of Environmental Engineering
基金
陕西省自然科学基础研究计划(2021JQ-503)。