期刊文献+

一种基于改进YOLOv4的舰炮弹着点水柱检测方法

A method for detecting impact point water column of shipboard artillery based on improved YOLOv4
下载PDF
导出
摘要 为解决弹着点水柱目标准确且快速检测的问题,充分平衡检测精度和实时性要求,首先通过将轻量级深度卷积神经网络MobileNetv3与YOLOv4算法结合,并利用3×3的深度可分离卷积代替PANet中的普通卷积,构建了用于水柱检测的网络模型M-YOLOv4;然后,从检测精度、模型容量和运行速度等方面将M-YOLOv4与YOLOv3、YOLOv4和YOLOv4-tiny等进行比较。研究结果表明:M-YOLOv4对水柱目标具有良好的检测效果,能够达到与YOLOv4相当的检测精度,并且参数量显著减少、运行速度更快。 In order to solve the problem of accurate and rapid detection of water column targets at impact points and fully balance detection accuracy and real-time requirements,MobileNet v3,a lightweight deep convolutional neural network,was combined with YOLOv4 algorithm,and the standard convolution in PANet was replaced by 3×3 deep separable convolution.On this basis,M-YOLOv4 was built for water column detection.Next,this model was compared with YOLOv3,YOLOv4 and YOLOv4-tiny network models in the aspect of detection precision,model capacity and running speed.The results show that M-YOLOv4 is of favorable detection effect of water columns,reaching the detection precision equivalent to that of YOLOv4.Besides,the parameter quantity is significantly reduced with higher operating speed.
作者 王智 石章松 吴鹏飞 吴中红 祁江鑫 WANG Zhi;SHI Zhang-song;WU Peng-fei;WU Zhong-hong;QI Jiang-xin(College of Weaponry Engineering,Naval Univ.of Engineering,Wuhan 430033,China)
出处 《海军工程大学学报》 CAS 北大核心 2022年第6期35-40,共6页 Journal of Naval University of Engineering
基金 国家自然科学基金资助项目(61773395)。
关键词 水柱检测 YOLOv4 深度可分离卷积 MobileNetv3 K-MEANS聚类算法 water column detection YOLOv4 deep separable convolution MobileNetv3 K-means clustering algorithm
  • 相关文献

参考文献2

二级参考文献5

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部