期刊文献+

基于智能代理人的舰船航渡策略仿真优化方法 被引量:1

Simulation method of warship sailing strategy optimization based on intelligent agent
下载PDF
导出
摘要 任务成功率是衡量舰船装备效能的重要标准,对任务成功性优化可以更好地发挥装备效能。因此,对舰船航渡过程中设备运行状态和系统整体状态要求进行了分析,针对现有航渡策略中没有考虑后续任务过程中可能出现的设备故障、容易导致后续任务无法按时完成的缺点,提出了基于智能代理人模型的舰船航渡优化策略,并考虑了动力系统的多状态性能输出等因素,实现了舰船在航渡过程中航速的实时、动态的优化调整。研究结果表明:在一定条件下,使用该优化策略可以降低未按时到达率,从而有效提高舰船任务成功率。 Mission success ratio is an important criterion to measure the effectiveness of warship′s equipment,and optimizing mission success can improve equipment effectiveness.The requirements of equipment operation status and overall system status during the warship′s sailing process were analyzed.In view of the shortcomings that the existing sailing strategy does not consider the equipment faults that may occur during the subsequent tasks,which may lead to the subsequent tasks not being completed on time,the warship′s optimization sailing strategy based on the intelligent agent model was proposed.The multi-state performance output of the propulsion system and other factors were considered to achieve real-time and dynamic optimization adjustment of the speed during the sailing.The results show that,under certain conditions,the optimization strategy can reduce the not arriving on time ratio,thus effectively improving the ship mission success ratio.
作者 吕建伟 熊梓皓 谢宗仁 徐一帆 Lü Jian-wei;XIONG Zi-hao;XIE Zong-ren;XU Yi-fan(Dept.of Management Engineering and Equipment Economics,Naval Univ.of Engineering,Wuhan 430033,China;Strategic Assessment and Consulting Center,Academy of Military Sciences,Beijing 100091,China)
出处 《海军工程大学学报》 CAS 北大核心 2022年第6期55-60,66,共7页 Journal of Naval University of Engineering
基金 博士后科学研究基金资助项目(2020M653925)。
关键词 舰船 任务成功率 航渡策略优化 智能代理人 warship mission success ratio sailing strategy optimization intelligent agent
  • 相关文献

参考文献2

二级参考文献19

  • 1Shuai Dian-xun,Shuai Qing.Particle Dynamics Approach toMulti-agent Systems[C]∥IEEE International Conference on Systems,Man and Cybernetics.2006:2470-2475.
  • 2De Giacomo G,Patrizi F.Automatic behavior composition synthesis[J].Artificial Intelligence,2013,196(3):106-142.
  • 3Re C,Res T.Coming Soon to a Lab Near You:Drag-and-Drop Virtual Worlds[J].Science,2011,331(6018):669-671.
  • 4Rupert M,Li C.An Organisational Multi-agent Systems Ap-proach for Designing Collaborative Tagging Systems[J].Web Intelligence and Intelligent Agent Technology,2008,2(1):114-117.
  • 5Tang Yong-li,Li Cong-dong.Dynamic Optimized Allocation ofDistributed Manufacturing Resources Based on MAS[C]∥IEEE International Conference on Control and Automation.2007:1431-1434.
  • 6Jiang Yi-chuan,Zhou Yi-feng.Task Allocation for Undepend-able Multiagent Systems in Social Networks[J].IEEE Transactions on Parallel and Distributed Systems,2013,4(8):1671-1681.
  • 7Owliya M,Saadat M.Agent-Based Interaction Protocols and Topologies for Manufacturing Task Allocation[J].IEEE Transactions on System,Man and Cybernetics:Systems,2013,3(1):38-52.
  • 8Chang Y C,Chu C P.Applying learning behavioral Petri nets to the analysis of learning behavior in Web-based learning environments[J].Information Sciences,2010,0(5):995-1009.
  • 9Conte R,Castelfranchi C.Cognitive and Social Action[M].UCL Press,London,1995.
  • 10Xiang Feng,Lau .Behavioral modeling with the new bio-inspired coordination generalized molecule model algorithm[J].Information Sciences,2013,2(10):1-19.

共引文献5

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部