摘要
为满足B柱多目标性能需求,设计了内凹三角形负泊松比微结构B柱。首先,采用单胞法推导新型微结构相对密度公式;其次,对3D打印微结构样件开展准静态压缩试验,以验证有限元模型的准确性;继而,以单位体积吸能量(SEA)最大、峰值力(PCF)和相对密度最小为目标,采用遗传算法(GA)获得最优微元胞结构参数。基于此,以质量最小为目标对B柱进行厚度优化,通过3种工况分析可得:相较于无夹芯碳纤维B柱,新型B柱后向弯曲位移降低5.28%;相较于无夹芯碳纤维B柱与碳纤维B柱,新型B柱侧向弯曲位移分别降低42.28%和48.05%,三点弯曲最大接触力分别提升80.08%和12.63%,三点弯曲位移分别降低0.02%和2.14%。
To satisfy multiple objective performance requirements of B-pillar,a novel B-pillar with concave triangle Negative Poisson’s Ratio(NPR)cellular structure was designed.Firstly,the relative density equation of novel cellular structure can be derived by employing unit cell method.Then,quasi-static compression test was carried out on 3D printed cellular structure sample to verify the accuracy of finite element model.In addition,Genetic Algorithm(GA)was utilized to obtain the optimal structural parameters with the goals of maximum Specific Energy Absorption(SEA),minimum Peak Collision Force(PCF)and minimum relative density.Based on this,the thickness of B-pillar was optimized with the goal of minimum mass.Through analysis on 3 working conditions,it can be concluded that compared with the non-sandwich carbon fiber B-pillar,the backward bending displacement of the novel B-pillar decreases by 5.28%;compared with nonsandwich carbon fiber B-pillar and carbon fiber B-pillar,the lateral bending displacement of novel B-pillar decreases by 42.28%and 48.05%respectively,the maximum contact force of three-point bending increases by 80.08%and 12.63%,and the three-point bending displacement decreases by 0.02%and 2.14%respectively.
作者
赵颖
施劲余
刘轩铭
邓晓钢
郑斯琦
Zhao Ying;Shi Jinyu;Liu Xuanming;Deng Xiaogang;Zheng Siqi(Southwest University,Chongqing 400715)
出处
《汽车技术》
CSCD
北大核心
2023年第2期1-8,14,共9页
Automobile Technology
基金
西南大学大学生创新创业训练计划项目(X202110635302)
重庆市自然科学基金面上项目(cstc2020jcyj-msxmX0996)
国家自然科学基金青年科学基金项目(52202451)。