期刊文献+

基于EEMD与CNN模型的多标签负荷识别方法 被引量:3

Multi-label load identification method based on EEMD and CNN model
下载PDF
导出
摘要 识别用户用电负荷组成与用电行为是智能电网技术发展的重要研究内容之一。本文提出了一种基于集合经验模态分解(EEMD)结合卷积神经网络(CNN)的多标签负荷识别方法,实现对用户负荷有效的非侵入式监测。首先从检测到事件的聚合测量数据中提取单周期电流波形,应用集合经验模态分解将电流分解为两种模态分量,接着应用欧氏距离相似度函数将分解后的电流转化为二维矩阵表示,通过CNN多标签分类器自动提取矩阵的有效特征,最后利用公开数据集对所提出的方法进行了实验验证。结果表明,基于EEMD处理后的负荷识别准确率高,能够有效地实现多标签负荷识别。 To identify the composition and behavior of users’power load is one of the important research contents in the development of smart grid technology.In this paper,a multi-label load identification method based on ensemble empirical mode decomposition(EEMD)and convolutional neural network(CNN)is proposed to realize effective non-invasive monitoring of user load.Firstly,the single cycle current waveform is extracted from the aggregated measurement data of the detected event,and the current is decomposed into two modal components by ensemble empirical mode decomposition.Secondly,the decomposed current is transformed into two-dimensional matrix representation by Euclidean distance similarity function,and the effective features of the matrix are automatically extracted by CNN multi-label classifier.Finally,the proposed method is verified by experiments using public data sets.The results show that the load identification based on EEMD has high accuracy and can effectively realize multi-label load identification.
作者 程志友 程安然 李悦 姜帅 CHENG Zhiyou;CHENG Anran;LI Yue;JIANG Shuai(Power Quality Engineering Research Center of the Ministry of Education,Anhui University,Hefei 230601,China;School of Internet,Anhui University,Hefei 230039,China)
出处 《电工电能新技术》 CSCD 北大核心 2023年第2期88-96,共9页 Advanced Technology of Electrical Engineering and Energy
基金 国家自然科学基金项目(61672032) 安徽省科技重大专项(18030901018) 安徽省自然科学基金项目(2108085QE237)。
关键词 集合经验模态分解 卷积神经网络 欧式距离相似度函数 多标签 负荷识别 EEMD CNN Euclidean distance similarity function multi-label load identification
  • 相关文献

参考文献7

二级参考文献71

  • 1占勇,丁屹峰,程浩忠,曾德君.电力系统谐波分析的稳健支持向量机方法研究[J].中国电机工程学报,2004,24(12):43-47. 被引量:60
  • 2黄文清,戴瑜兴,全慧敏.基于Daubechies小波的谐波分析算法[J].电工技术学报,2006,21(6):45-48. 被引量:20
  • 3乐叶青,徐政.平滑伪Wigner-Ville分布在电力系统谐波和电压变动检测中的应用[J].继电器,2006,34(16):39-43. 被引量:11
  • 4CHOI Chang-sic, LEE Jeong-in, LEE II-woo. Complex home energy management system architecture and implementation for green home with built-in photovoltaic and motorized blinders[C] //ICT Convergence (ICTC), 2012 International Conference on, 2012: 295-296.
  • 5HAN Jin-soo, CHOI Chang-sic, PARK Wan-ki, et al. Green home energy management system through comparison of energy usage between the same kinds of home appliances[C] // 2011 IEEE 15th International Symposium on, 2011.
  • 6LI Jian, CHUNG Jae-yoon, XIAO Jin, et al. On the design and implementation of a home energy management system[C] // Wireless and Pervasive Computing (ISWPC), 2011 6th International Symposium on, 2011.
  • 7Lobos T, Leonowicz Z, Rezmer J, et al. High-resolu- tion spectrum estimation methods for signal analysis in power systems [ J]. IEEE Transactions on Instrumenta- tion and Measurement, 2006, 55 (1) : 219-225.
  • 8Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlin- ear and non-stationary time series analysis [ J]. Proceed- ings of the Royal Society of London: Series A, 1998, 454: 903-995.
  • 9Wu Z H, Huang N E. Ensemble empirical mode decom- position: a noise assisted data analysis method [ J]. Ad- vances in Adaptive Data Analysis, 2009, l (I) : 1-41.
  • 10Zbigniwe L, Tadeusz L, Jacek R. Advanced spectrum estimation methods for signal analysis in power electronics [ J ]. IEEE Transactions on Industrial Electronics, 2003, 50 (3): 514-519.

共引文献165

同被引文献50

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部