摘要
首先,针对分布式电源(distributed generation,DG)与负荷的随机性建立概率模型。其次,建立了配电网电压稳定指标的概率模型,并将电压稳定指标应用配电网的电压优化模型中,基于无迹变换法对配电网概率潮流进行计算,建立了配电网的概率多目标电压优化模型,并以改进的粒子群算法求解模型。最后,算例验证了所采用方法能通过配置并联电容器、静止无功补偿器、有载调压变压器电压-无功控制设备降低配电网网损,改善含DG配电网的电压稳定、越限、波动问题,提升了配电网对源荷不确定性应对能力。
Firstly,a probability model is established for the randomness of distributed power sources and loads,and then a voltage stabil⁃ity index of the distribution network is established.Secondly,The probability model,and the voltage stability index is applied to the volt⁃age optimization model of the distribution network,and the probability flow of the distribution network is calculated based on the unscented transformation method.The probabilistic multi-objective voltage optimization model of the distribution network with the objective function,and the improved particle swarm algorithm is used to solve the model.Finally,t The calculation example shows that the proposed method can reduce the network loss of distribution network by configuring shunt capacitors,static var compensators,volt⁃age and reactive power control equipment of on-load tap changer improve the voltage stability,over-limit and fluctuation problems of the distribution network including DG,and improve the ability of the distribution network to cope with source and load uncertainty.
作者
杨顺吉
李庆生
明志勇
马启鹏
罗启飞
YANG Shunji;LI Qingsheng;MING Zhiyong;MA Qipeng;LUO Qifei(Electrical Engineering College,Guizhou University,Guiyang 550025,China;Power Grid Planning&Research Center,Guizhou Power Grid Co.,Ltd.,Guiyang 550003,China;Tongren Power Supply Bureau,Guizhou Power Grid Co.,Ltd.,Tongren,Guizhou 554300,China;Anshun City Guanling County Power Supply Bureau,Guizhou Power Grid Co.,Ltd.,Anshun,Guizhou 561399,China)
出处
《南方电网技术》
CSCD
北大核心
2023年第1期125-135,共11页
Southern Power System Technology
基金
中国南方电网有限责任公司重点科技项目(GZKJXM20200776)
贵州省科技厅科技项目“需求侧灵活资源与电网智能互动关键技术研究与示范项目”(黔科合支撑[2021]一般409)。
关键词
电压稳定
概率指标
概率潮流
无迹变换
多目标概率无功优化
配电网
voltage stability
probabilistic indicator
probabilistic power flow
unscented transformation
multi-objective probabilistic reactive power optimization
distribution network