摘要
基于自研的OPTShip-SJTU优化软件,通过改变鸭尾型线,对波浪中航行的国产VISTA型豪华邮轮的总阻力系数、量纲一纵摇和垂荡幅值进行了综合优化和分析。优化过程中采用自由变形、优化拉丁超立方采样方法、计算流体力学、Kriging近似模型以及多目标遗传算法(NSGA-Ⅱ),得到了供决策者选择的Pareto优化解集,选取了4个优化鸭尾进行了数值模拟和验证。鸭尾两侧型线向前收缩和中部型线向后延伸,邮轮的总阻力系数、量纲一纵摇和垂荡幅值可同时得到优化;鸭尾向后伸展,量纲一垂荡幅值略有增加,总阻力系数和量纲一纵摇幅值有所降低,纵摇和垂荡存在优化冲突。研究中采用的优化方法和流程可用于豪华邮轮水动力性能优化,所得结论可为邮轮鸭尾型线设计提供参考。
Based on the self-developed OPTShip-SJTU optimization software, this paper presents a comprehensive optimization and analysis of the total resistance coefficient, non-dimensional pitch and heave of a domestic VISTA luxury cruise ship sailing in waves by changing the ducktail profile. Free-form deformation, optimal Latin hypercube sampling method, computational fluid dynamics, Kriging approximation model and non-dominated sorting genetic algorithm(NSGA-Ⅱ) were used in the optimization to obtain the Pareto-optimal solution set. Four optimized ducktails were selected for numerical simulation and validation.With the forward contraction of both sides of the ducktail and the backward extension in the middle, the total resistance coefficient, non-dimensional pitch and heave of the cruise ship can be optimized simultaneously.When the ducktail extends backward, the non-dimensional heave increases slightly, but the total resistance coefficient and the non-dimensional amplitude of pitch motion decrease, which has certain conflict between the optimization of heave and pitch. The method and procedure adopted in the study can be used in the hydrodynamic performance optimization of luxury cruise ships, and the conclusions can provide a reference to the optimization and design of the ducktail of cruise ships.
作者
董奕清
赵伟文
王建华
DONG Yiqing;ZHAO Weiwen;WANG Jianhua(Computational Marine Hydrodynamics Lab(CMHL),School of Naval Architecture,Ocean and Civil Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)
出处
《中国造船》
EI
CSCD
北大核心
2022年第6期31-43,共13页
Shipbuilding of China
基金
国家自然科学基金项目(51809169)。
关键词
豪华邮轮
鸭尾变形
水动力性能
多目标优化
计算流体力学
luxury cruise ships
ducktail deformation
hydrodynamic performance
multi objective optimization
computational fluid dynamics