摘要
借助Clifford半群序和理论,根据外层算子G 1是否为一致模的分类标准,提出了两种n-一致模的构造方法。基于这些构造方法,可构造许多新的n-一致模。作为应用,证明了相关文献中具有连续基础算子的n-一致模的所有分解定理的逆命题都成立。
By means of Clifford's ordinal sum theory,according to the classification criteria of whether the outer operator G 1 is a uninorm,the other two kinds of methods to constructing a new n-uninorm are given.Based on these methods,there are a number of new n-uninorms.Moreover,as an application,it is proved that the converse propositions of all decomposed theorems hold for all n-uninorms with continuous underlying functions in the relevant references.
作者
傅丽
覃锋
FU Li;QIN Feng(School of Mathematics and Statistics,Qinghai Minzu University,Xining 810007,Qinghai,China;School of Mathematics and Statistics,Jiangxi Normal University,Nanchang 330022,Jiangxi,China)
出处
《陕西师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2023年第2期130-138,共9页
Journal of Shaanxi Normal University:Natural Science Edition
基金
国家自然科学基金(11971210,61967008)
江西省主要学科学术和技术带头人培养计划(20171ACB20010)。