期刊文献+

灌浆施工全过程智能监测数据云存储与深度分析系统研究 被引量:2

Cloud Storage and Depth Analysis System of Intelligent Monitoring Data for the Whole Process of Grouting Construction
下载PDF
导出
摘要 灌浆施工作为水利工程建设中最重要的防渗手段,对工程的质量有着极其重要的作用。灌浆施工全过程智能监测数据云存储与深度分析系统采用自组网短距离无线网络传输技术,结合GPRS/WiFi/5G等无线传输模式,将工程施工现场多台灌浆记录仪数字信号数据实时采集并自动发送至存储服务器,搭建灌浆施工物联网,实现灌浆实时数据云存储。运用“大云物移智”技术实现对灌浆数据的智能感知,将灌浆施工过程打印的纸质资料数字化、标准化和云端可视化,并通过灌浆大数据的深度分析、比较、预测,为灌浆施工管理提供辅助决策支持。 As a most crucial anti-seepage means in the construction of water conservancy projects,grouting construction has a great impact on the quality of projects.We propose cloud storage and depth analysis system for intelligent monitoring data in the whole process of grouting construction.The system collects the digital signal data of multiple grouting recorders on site in real time and sends them to the storage server by using ad hoc short-distance wireless network transmission technology in association with GPRS/WIFI/5G and other wireless transmission modes.By using this system,we could build an internet of things for grouting construction,and store the real-time grouting data in the cloud.Moreover,by using the technology of "big data,IOT,cloud,mobile internet,and AI",the grouting data can be percepted and the paper files printed in the grouting process can be digitized,standardized and visualized in the cloud.We can also use this sytem to support the decision-making of grouting construction management through deep analysis,comparison and prediction of grouting data.
作者 张帆 詹程远 林育强 张宜虎 郭亮 ZHANG Fan;ZHAN Chengyuan;LINYuqiang;ZHANG Yihu;GUO Liang(Henan Xinhua Wuyue Pumped Storage Power Generation Co.,Ltd.,Xinyang 465400,China;Changjiang River Scientific Research Institute,Wuhan 430010,China)
出处 《长江技术经济》 2023年第1期93-97,共5页 Technology and Economy of Changjiang
基金 国网新源控股有限公司科技项目(fngcKJ[2016]41号) 中国葛洲坝集团股份有限公司科技项目(GZB-DSX-FW-2021-02)。
关键词 灌浆监测 云存储 深度分析 质量评价 数值模拟 grouting monitoring cloud storage depth analysis quality evaluation numerical simulation
  • 相关文献

参考文献5

二级参考文献23

  • 1Kung H T, Lin C K, Vlah D. CloudSense: continuous fine-grain cloud monitoring with compressive sensing[C]//Proceedings of the 3rd USENIX Workshop on Hot Topics in Cloud Computing. Portland, OR, USA, 2011:15-19.
  • 2Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 3Candes E J. Compressive sampling[C]//Proceedings of the International Congress of Mathematicians. Madrid, Spain, 2006(3): 1433-1452.
  • 4Lei L, Wo T Y, Hu C M. CREST: towards fast speculation of straggler tasks in MapReduce[C]//Proceedings of the IEEE 8th International Conference on E-business Engineering. Beijing, China, 2011: 311-316.
  • 5Tom White. Hadoop: the definitive guide[M]. Sebastopol, CA, USA:ORelly Media Inc, 2011: 170-173.
  • 6Candes E J. The restricted isometry property and its implications for compressed sensing[J]. Computes Rendus Mathematique, 2008, 346(9/10): 589-592.
  • 7Tsaig Y, Donoho D L. Extensions of compressed sensing[J]. Signal Processing, 2006, 86(3): 549-571.
  • 8Baraniuk R, Davenport M, Devore R, et al. A simple proof of the restricted isometry property for random matrices[J]. Constructive Approximation, 2008, 28(3): 253-263.
  • 9Davis G, Mallat S, Avellaneda M. Adaptive greedy approximations[J]. Constructive Approximation, 1997, 13(1): 57-98.
  • 10Wu Haijia,Chen Weiwei,Hu Guyu. FFS: a PB-level cloud-storage system based on network [J]. Journal on Communications, 2011, 32(9): 24-33.

共引文献22

同被引文献20

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部