期刊文献+

柔性仿生手指关节的触觉力/角度感知 被引量:1

A tactile force/Angle perception method for flexible humanoid finger joints
下载PDF
导出
摘要 柔性仿生机器人的感知功能实现需要传感器可集成且具备一定的柔性,否则由于顺应性不足很难得到良好应用效果。在本文中,作者将柔性仿生手指作为应用载体,探索一种基于液态导电金属的柔性触觉力/应变感知纤维,可完全贴合载体,同时实现手指指尖触觉力和关节角度两个物理量测量。具体来说,本文将液态导电金属注入到一定长度的预制硅胶软管替代常规的微流腔道制作,进而形成管状且可任意变形和布局的柔性传感纤维,实现检测不同的变形物理量(本文中利用其力和应变感知性能),该方法在保证器件柔性和功能性的前提下也极大地降低微流腔道工艺的复杂性与繁琐性。最后,测量实验结果表明,基于液态导电金属的柔性传感纤维可嵌入并完全贴合柔性手指结构,并实现对手指的指尖触觉力感知(约1600 kPa)和关节角度变化(约60°)同时感知及某一特定力/角度下的准确跟踪,展示了其作为柔性感知单元,可应用在更多类型的柔性或软体类应用载体的巨大潜力。 To realize the sensing function of flexible bionic robots,sensors need to be integrated and flexible;otherwise,it is difficult to achieve a good application effect owing to the lack of compliance.To obtain a flexible tactile force/strain sensing fiber based on liquid conductive metal,this study considers as an application carrier a flexible bionic finger that can completely fit the carrier to measure the tactile force of the fingertip and joint angle.Specifically,liquid conductive metal is injected into a prefabricated silicone hose having a certain length instead of conventional microfluidics.This enables the formation of flexible sensing fibers that are tubular and which can be arbitrarily deformed and arranged,thus realizing the detection of different deformation physical quantities(this study utilizes its force and strain sensing properties).This method can considerably reduce the complexity of the microfluidic channel process while ensuring the flexibility and functionality of the device.Experimental results show that the flexible sensing fiber based on liquid conductive metal can be embedded and fully fit the flexible finger structure,and can simultaneously realize the sensing of the tactile force and joint angle changes of the finger as well as accurate tracking at a specific force/angle,demonstrating its role as a flexible sensing unit.The proposed method has excellent potential for application to more types of flexible or software application carriers.
作者 卢思彤 李柏晨 阎吉雅 李强 LU Sitong;LI Bochen;YAN Jiya;LI Qiang(School of Mechanical and Material Engineering,North China University of Technology,Beijing 100144,China)
出处 《光学精密工程》 EI CAS CSCD 北大核心 2023年第4期470-478,共9页 Optics and Precision Engineering
基金 国家自然科学基金青年基金资助项目(No.52205001)。
关键词 触觉力感知 关节角度感知 柔性仿生手指 液态导电金属 tactile force perception joint angle perception flexible humanoid fingers liquid conducting metal
  • 相关文献

参考文献10

二级参考文献69

  • 1赵士元,崔继文(指导),陈勐勐.光纤形状传感技术综述[J].光学精密工程,2020,28(1):10-29. 被引量:30
  • 2于靖军,毕树生,宗光华,刘继钢.全柔性机器人机构结构动力学分析方法研究[J].机械工程学报,2004,40(8):54-58. 被引量:7
  • 3马丙辉,卢泽生.小型微力传感器的研制[J].机械工程学报,2006,42(B05):227-230. 被引量:4
  • 4HOGAN N. Impedance control: An approach to manipulator [J]. ASME J Dyna Syst, Measure, Control, 1985, 107(3): 1-24.
  • 5ZHANG Ting, LI Kai, YANG Jing. Seam tracking control for mobile welding robot based on vision sensor [J]. Journal of Central South University of Teclmology, 2010, 17(6): 1320-1326.
  • 6SERAJI H, COLBAUGH R. FOrce tracking in impedance control [C]//Proc IEEE Int Conf Robotics and Automation. Altanta: IEEE Process, 1993: 499-506.
  • 7ERICKSON D, WEBER M, SHARF I. Contact stiffness and damping estimation for robotic systems [J]. The International Journal of Robotics Research, 2003, 22(3): 41-57.
  • 8SERAJI H, COLBAUGH R. Force tracking in impedance control [J]. International Journal of Robotics Research, 1997, 16( 1 ): 97-117.
  • 9SINGH S, POPA D. An analysis of some fundamental problems inadaptive control of force and impedance behavior: Theory and experiments [J]. IEEE Transactions on Robotics and Automation, 1995, 11(6): 912-921.
  • 10LOVE L, BOOK W. Environment estimation for enhanced impedance control [C]// Proceedings of the IEEE International Conference on Robotics and Automation. Belgium: IEEE Press, 1995: 1854-1859.

共引文献166

同被引文献12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部