期刊文献+

基于强化学习的航天器姿态控制器设计

Satellite Attitude Control Based on Reinforcement Learning Method
下载PDF
导出
摘要 航天器在轨执行某些任务时,其质量参数会发生未知变化,传统控制方法在这种情况下控制效果不佳。本文提出基于强化学习的航天器姿态控制器设计方法,该方法在姿态控制器训练过程中不需要对航天器进行动力学建模,不依赖航天器的质量参数。当质量参数发生较大未知变化时,训练好的控制器仍然可以保持较好的控制效果。仿真测试表明:使用基于强化学习方法训练的控制器确实具有良好的鲁棒性。此外,回报函数的设计会明显影响姿态控制器的训练,因此对不同的回报函数设计进行了研究。 Owing to the growing complexity of space mission, classical control methods cannot meet the increasing high requirements for the robustness and adaptiveness of the satellite attitude control system. In this paper, a design method for the satellite attitude control system is proposed based on the reinforcement learning(RL) method.With the proposed method, it is not necessary to establish a dynamic model for the spacecraft in the training process of the attitude controller, and the satellite attitude control system is independent of the spacecraft mass parameters.Besides, when the mass parameters change, the trained controller can still maintain a good control effect. The test results show that the control system trained by the RL method has a stronger adaptive capability. In addition, since the design of the return function will significantly affect the training effect, different return function designs are also studied.
作者 张瑞卿 钟睿 徐毅 ZHANG Ruiqing;ZHONG Rui;XU Yi(School of Astronautics,Beihang University,Beijing 102206,China;Shanghai Institute of Satellite Engineering,Shanghai 201109,China)
出处 《上海航天(中英文)》 CSCD 2023年第1期80-85,共6页 Aerospace Shanghai(Chinese&English)
基金 国家自然科学基金(11772023) 上海航天科技创新基金(SAST2019-040)。
关键词 航天器姿态控制 鲁棒性 强化学习 神经网络 回报函数 attitude control robustness reinforcement learning neural network reward function
  • 相关文献

参考文献3

二级参考文献32

  • 1刘峰,岳宝增,唐勇.多充液贮腔航天器耦合动力学与姿态控制[J].宇航学报,2020,41(1):19-26. 被引量:7
  • 2宋斌,马广富,李传江,吕建婷.基于偏航观测器的偏置动量卫星姿态控制[J].哈尔滨工程大学学报,2007,28(1):15-20. 被引量:4
  • 3王曙光,张伟.偏置动量卫星偏航姿态估计与控制研究[J].上海航天,2006,23(6):18-21. 被引量:4
  • 4周黎妮,唐国金,李海阳.航天器姿态机动的自抗扰控制器设计[J].系统工程与电子技术,2007,29(12):2122-2126. 被引量:23
  • 5WERTZ J R. Spacecraft attitude determination and control [M]. Springer Science & Business Media, 2012.
  • 6YANG C-C, LAI L-C, WU C-L Minimal energy maneuvering control of a rigid spacecraft with momentum transfer [J]. Journal of the Franklin Institute, 2007, 344(7): 991-1005.
  • 7TEWARI A.Optimal nonlinear spacecraft attitude control through Hamilton-Jacobi formulation [J]. The Journal of the astronautical sciences, 2002, 50(1): 99-112.
  • 8LIANG Y-W, XU S-D, CHU T-C, et al. Application of VSC reliabte design to spacecraft attitude tracking; proceedings of the American Control Conference, 2005 Proceedings of the 2005, F, 2005 [C]. IEEE.
  • 9ZOU A-M, KUMAR K D, HOU Z-G. Quatemion-based adap- tive output feedback attitude control of spacecraft using Cheby- shev neural networks [J]. Neural Networks, IEEE Transactions on, 2010, 21(9): 1457-1471.
  • 10GUAN P, LIU X-J, LIU J-Z. Adaptive fuzzy sliding mode con- trol for flexible satellite [J]. Engineering Applications of Artificial Intelligence, 2005, 18(4): 451-459.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部