期刊文献+

肉兔84日龄体重基因组评估准确性分析

Analysis on the Accuracy of Genomic Assessment of 84 Day Old Meat Rabbit Body Weight
原文传递
导出
摘要 基因组选择(Genomic selection,GS)技术在肉兔上的研究和应用都还显著落后于其他畜禽。为探究基因组选择在肉兔育种上的实际应用,研究以363只肉兔的84日龄体重为试验材料,结合全基因组范围内的87704个SNPs标记,构建线性混合模型;利用基因组最佳线性无偏预测(GBLUP)方法估计个体的基因组育种值,并采用5倍交叉验证法分析估计的准确性。结果表明:基因组估计育种值准确性最高为0.23,最低为0.01,平均值为0.12。该研究结果为在肉兔中开展基因组选择提供了参考。 The research and application of genomic selection(GS)technology in meat rabbits are significantly behind other livestock and poultry.In order to explore the practical application of genome selection in meat rabbit breeding,this study used the 84 day body weight of 363 meat rabbits as experimental materials,combined with 87704 SNPs markers in the whole genome,to construct a linear mixed model;Genome best linear unbiased prediction(GBLUP)method was used to estimate individual genome breeding value,and the accuracy of estimation was analyzed by 5-fold cross validation method.The results showed that the highest accuracy of genome estimation breeding value was 0.23,the lowest was0.01,and the average was 0.12.The results provide a useful reference for genome selection in meat rabbits.
作者 廖勇兰 杨丽 李明勇 贾先波 王波 刘曼 赖松家 陈仕毅 LIAO Yonglan;YANG Li;LI Mingyong;JIA Xianbo;WANG Bo;LIU Man;LAI Songjia;CHEN Shiyi(Sichuan Provincial Key Laboratory of Livestock and Poultry Genetic Resources Exploration and Innovative Utilization,Sichuan Agricultural University,Chengdu 611130;Qingdao Kangda Rabbit Industry Development Company Limited,Qingdao 266400)
出处 《中国养兔》 2022年第6期15-16,24,共3页 Chinese Journal of Rabbit Farming
基金 四川省重点研发项目(编号:2021YFYZ0033) 国家现代农业产业技术体系建设项目(编号:CARS-44-A-2)。
关键词 基因组选择 肉兔 体重 育种 genome selection rabbit body weight breeding
  • 相关文献

参考文献4

二级参考文献19

  • 1陈继兰,文杰,赵桂苹,郑麦青,杨宁.鸡肉肌苷酸和肌内脂肪等肉品风味性状遗传参数的估计[J].遗传,2005,27(6):898-902. 被引量:34
  • 2赵桂苹,文杰,陈继兰,郑麦青,李小华.黄羽肉鸡IMF选择与遗传参数估计[J].畜牧兽医学报,2006,37(9):870-873. 被引量:10
  • 3International Chicken Genome Sequencing, Consortium. Se-quence and comparative analysis of the chicken genomeprovide unique perspectives on vertebrate evolution[J]. Na-ture,2004,432(7018) :695-716.
  • 4VANRADEN P M. Efficient methods to compute genomicpredictions[J]. J Dairy Sci,2008,91(11):4414-4423.
  • 5HENDERSON C R. Best linear unbiased estimation andprediction under a selection model [J]. Biometrics, 1975,31(2):423-447.
  • 6CHEN L,SCHENKEL F. VINSKY M, et al. Accuracy ofpredicting genomic breeding values for residual feed in-take in Angus and Charolais beef cattle [ J ]. Journal of An-imal Science,2013,91(10):4669-4678.
  • 7CLEVELAND M A, HICKEY J M. Practical implementa-tion of cost-effective genomic selection in commercial pigbreeding using imputation [J]. Journal of Animal Science,2013,91(8):3583-3592.
  • 8SCHENKEL F S, SARGOLZACI M. QMSim- Whole ge-nome simulation software for mimicking livestock popula-tions [J]. Canadian Journal of Animal Science, 2009,89(1):130.
  • 9SHENG Z,PErTERSSON M E,HU X,et al. Genetic dis-section of growth traits in a Chinese indigenous x com-mercial broiler chicken cross [J]. BMC Genomics, 2013?14):151.
  • 10HAZEL L N. The genetic basis for constructing selectionindexes [J]. Genetics, 1943,28(6) : 476-90.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部