摘要
厌氧消化是处理含抗生素有机废物的常用技术手段,但高浓度抗生素会抑制厌氧微生物菌群活性,从而干扰厌氧消化效能和抗生素自身降解效率。近年来,导电材料强化含抗生素有机废物厌氧消化取得了良好效果,有机废物资源回收效率得到进一步提升。本文从抗生素使用现状和对厌氧消化代谢过程的影响出发,讨论了抗生素在厌氧消化中的迁移转化机制,重点阐述了铁基和碳基导电材料在抗生素胁迫厌氧消化系统中的应用及生化作用机理。研究表明:通过富集功能性微生物、强化微生物种间电子传递以及削减厌氧消化系统中的抗生素和抗生素抗性基因,导电材料可以提升厌氧消化产甲烷效能、降低抗生素污染的环境风险。最后,从构建生物信息网络、开发优化新型材料和处理多元污染物方面对导电材料强化技术的发展方向进行了展望。
Anaerobic digestion(AD) is a conventional technique in antibiotic organic waste treatment.However, high concentration of antibiotics might threaten the activity of microbial community, thus weakening the anaerobic digestion performance and antibiotics degradation. In recent years, anaerobic digestion of organic waste containing antibiotics via conductive materials(CM) addition has been enhanced,and the efficiency of organic resources recovery has been further improved. Based on the current consumption of antibiotic and their effects on AD progress, the review analyzed the antibiotics removal mechanism in AD, and especially emphasized the application and mechanism of iron-based and carbon-based materials on improving antibiotic-stressed AD performance. The results indicated that CM could improve the performance of AD and reduce environmental risks by enhancing interspecies electron transfer, enriching functional microorganisms, and decreasing antibiotics and antibiotic resistance genes in the AD system.Finally, the future directions of conductive materials strengthening technology were discussed from the construction of biological information network, the development and optimization of new material, and the application in multi-pollutant treatment.
作者
祝佳欣
朱雯喆
徐俊
谢靖
王文标
谢丽
ZHU Jiaxin;ZHU Wenzhe;XU Jun;XIE Jing;WANG Wenbiao;XIE Li(The Yangtze River Water Environment Key Laboratory of the Ministry of Education,College of Environmental Science and Engineering,Tongji University,Shanghai 200092,China;Shanghai Honess Environmental Technology Co.,Ltd.,Shanghai 200082,China)
出处
《化工进展》
EI
CAS
CSCD
北大核心
2023年第2期1008-1019,共12页
Chemical Industry and Engineering Progress
基金
国家自然科学基金(51978487)。
关键词
厌氧消化
抗生素
导电材料
种间电子传递
产甲烷菌
anaerobic digestion
antibiotic
conductive materials
direct interspecies electron transfer
methanogens