摘要
知识追踪,旨在根据学生的历史答题表现实时追踪学生的知识状态(知识的掌握程度)并且预测学生未来的答题表现。目前的研究仅仅探索了问题或概念本身对学生答题表现的直接影响,而往往忽略了问题及包含的概念中存在的深层次信息对学生答题表现的间接影响。为了更好地利用这些深层次信息,一种融合项目反应理论的图注意力深度知识追踪模型GAKT-IRT被提出。模型将图注意力网络应用于知识追踪领域,取得了显著的提升效果,并使用IRT增加了模型的可解释性。首先,通过图注意力网络层获得问题的深层次特征表示;接着,根据结合了深层次信息的学生历史答题序列对学生的知识状态进行建模;然后,使用IRT对学生未来的答题表现进行预测。在6个公开真实在线教育数据集上的对比实验结果证明了,GAKT-IRT模型可以更好地完成知识追踪任务,在预测学生未来答题表现上具有明显的优势。
Knowledge tracing aims to trace students’knowledge state(the degree of knowledge)based on their historical answer performance in real time and predict their future answer performance.The current research only explores the direct influence of the question or concept itself on the performance of students’answering questions,while often ignores the indirect influence of the deep-level information in the questions and the concepts contained on the performance of students’answering questions.In order to make better use of these deep-level information,a graph attention deep knowledge tracing model integrated with IRT(GAKT-IRT)is proposed,which integrates item response theory(IRT).The graph attention network is applied to the field of knowledge tracing and uses IRT to increase the interpretability of the model.First,obtain the deep-level feature representation of the problem through the graph attention network layer.Next,model students’knowledge state based on their historical answer sequence that combines the in-depth information.Then,use IRT to predict students’future answer performance.Results of comparative experiments on 6 open real online education datasets prove that the GAKT-IRT model can better complete the knowledge tracing task and has obvious advantages in predicting the future performance of students in answering questions.
作者
董永峰
黄港
薛婉若
李林昊
DONG Yongfeng;HUANG Gang;XUE Wanruo;LI Linhao(School of Artifcial Intelligence,Hebei University of Technology,Tianjin 300401,China;Hebei Key Laboratory of Big Data Computing,Tianjin 300401,China;Hebei Engineering Research Center of Data-Driven Industrial Intelligent,Tianjin 300401,China)
出处
《计算机科学》
CSCD
北大核心
2023年第3期173-180,共8页
Computer Science
基金
国家自然科学基金(61902106,61806072)
河北省高等教育教学改革研究与实践项目(2020GJJG027)
河北省自然科学基金(F2020202028)。
关键词
知识追踪
图注意力网络
项目反应理论
深度学习
可解释性
Knowledge tracing
Graph attention network
Item response theory
Deep learning
Interpretability