期刊文献+

基于核空间优化SVM的单用户频谱感知算法

Single User Spectrum Sensing Algorithm Based on Kernel Space Optimization SVM
下载PDF
导出
摘要 在认知无线电领域中,由于噪声随机动态变化引起信号聚类重叠,导致能量检测性能较差,为了解决能量检测效率低以及噪声变化对频谱检测性能的影响,提出了一种基于核空间优化SVM的单用户频谱感知算法。该算法将支持向量机和核空间优化相关理论相结合,通过对信号频谱占用以及空闲两种状态构建出认知信号,对信号进行小波降噪处理后,构建出特征向量进行训练和学习,从而得到判断频谱状态的分类模型,并利用自适应t分布变异策略以及萤火虫扰动算法对被囊群算法寻优过程进行改进和加速,优化训练搜索得到最佳核函数参数σ和惩罚系数C。仿真实验结果表明,提出的基于核空间优化支持向量机的单用户频谱感知算法和传统的能量检测以及协作频谱感知算法相比较,具有较高的检测准确性和鲁棒性。 In the field of cognitive radio,the random dynamic change of noise causes signal clustering overlap,resulting in poor energy detection performance.In order to solve the low efficiency of energy detection and the impact of noise changes on the performance of spectrum detection,a single user spectrum sensing algorithm based on nuclear space optimization SVM is proposed,which combines the theory of support vector machine and nuclear space optimization,construct a cognitive signal by occupying the signal spectrum and idle two states,and performs wavelet noise reduction treatment on the signal.The eigenvectors are trained and learned to obtain a classification model for judging the spectral state,and the adaptive t-distribution variation strategy and the firefly perturbation algorithm are used to improve and accelerate the optimization process of the tunicate swarm algorithm,and the optimal kernel function parameterσand punishment coefficient C are obtained by optimizing the training search.Simulation results show that the proposed single user spectrum sensing algorithm based on the nuclear space optimization SVM has relatively high detection accuracy and robustness compared with the traditional energy detection and collaborative spectrum sensing algorithm.
作者 余飞 岳文静 陈志 YU Fei;YUE Wen-jing;CHEN Zhi(School of Telecommunications&Information Engineering,Nanjing University of Posts&Telecommunications,Nanjing 210023,China;School of Computer,Nanjing University of Posts&Telecommunications,Nanjing 210023,China)
出处 《计算机技术与发展》 2023年第3期180-186,共7页 Computer Technology and Development
基金 江苏省重点研发计划(社会发展)项目(BE2019739) 中兴通讯产学研合作基金项目(2021外381)。
关键词 核空间优化 支持向量机 小波降噪 被囊群算法 单用户频谱感知 nuclear space optimization support vector machine wavelet noise reduction tunicate swarm algorithm single user spectrum sensing
  • 相关文献

参考文献15

二级参考文献91

  • 1胥锋,薛质,李建华.基于支持向量机的电子邮件过滤技术[J].电信快报(网络与通信),2006(10):22-26. 被引量:1
  • 2薛欣,贺国平.基于SVM决策树判别测试点类别的新方法[J].计算机应用,2007,27(1):84-85. 被引量:2
  • 3刘丽珍,贺海军,陆玉昌,宋瀚涛.支持向量机在网页信息分类中的应用研究[J].小型微型计算机系统,2007,28(2):337-340. 被引量:7
  • 4CHEN Xiao-fei, Nagaraj S V. Entropy based spectrum sensing in cognitive radio [ J ]. Wireless Telecommunica- tions Symposium, 2009, 89 (2) : 174-180.
  • 5Cabric D, Mishra S M, Brodersen R W. Implementation issues in spectrum sensing for cognitive radios [ C ]///Pro-ceedings Asilomar Conference on Signals, Systems, and Computers. Grove : IEEE Computer Society, 2004, 1 : 772-776.
  • 6Lunden J, Koivunen V, Huttunen A, et al. Spectrum sensing in cognitive radios based on multiple cyclic fre- quencies [ C ]// Cognitive Radio Oriented Wireless Net- works and Communications. Orlando: IEEE Computer So- ciety, 2007: 37-43.
  • 7Mishra S M, Sahai A, Brodersen R W. Cooperative sens- ing among cognitive radios [ C ] // IEEE International Conference on communications. Istanbul: IEEE Press, 2006, 4: 1658-1663.
  • 8Renzo M D, Imbriglio L, Fabio G, et al. Cooperative spectrum sensing for cognitive radios: performance analy- sis for realistic system setups and channel conditions [ C ]// Mobile Lightweight Wireless Systems. Berlin: Springer, 2009, 13: 125-134.
  • 9Lunden J, Koivunen V, Huttunen A, et al. Collaborative cyclostationary spectrum sensing for cognitive radio systems [J]. IEEE Transactions on Signal Processing, 2009, 57 (11) : 4182-4195.
  • 10GOH L P, LEI Zhong-ding, FRANCOIS C. DVB detector for cognitive radio [ C ]//IEEE International Conference on Communications. Glasgow: IEEE Press, 2007: 6460- 6465.

共引文献145

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部