期刊文献+

面向量子博弈论的光量子芯片设计及实验 被引量:1

Design and experiment of photonic quantum chip for quantum game theory
下载PDF
导出
摘要 量子博弈论是量子信息和经典博弈论的交叉研究方向。理论研究表明,量子博弈模型不仅能够突破经典博弈模型的收益上限,更是有望用于深入理解和突破量子通信、量子计算等领域的很多基础问题。针对一种利益冲突的贝叶斯量子博弈模型,提出了一种可编程的光量子芯片结构,首次运用硅基光量子芯片实验完成了量子博弈实验。通过动态生成和调控片上量子纠缠态,实验证实了量子博弈相对经典博弈的博弈优势,展示了光量子芯片在量子博弈论研究中的重要作用,为量子信息领域更复杂问题的研究提供了重要的实验手段。 Quantum game theory is an interdisciplinary area combining quantum information and game theory.Theoretical studies demonstrate that quantum games surpass the maximal interest of classical ones,which can be applied to analyze and solve fundamental problems in various fields,such as quantum communication and quantum computing.Aiming at a Bayesian quantum game model with conflictive interests,this paper proposes a programmable photonic quantum chip structure,and completes the quantum game experiment with silicon based optical quantum chip for the first time.By dynamically generating and modulating entangled states on the chip,the experiment demonstrates the advantage of the quantum game over the classical one.This paper shows that photonic quantum chips play a vital role in the research of quantum game theory and provide a promising methodology to study more complicated problems in the field of quantum information.
作者 曾茹 詹俊伟 薛诗川 王易之 王冬阳 刘英文 吴俊杰 ZENG Ru;ZHAN Jun-wei;XUE Shi-chuan;WANG Yi-zhi;WANG Dong-yang;LIU Ying-wen;WU Jun-jie(Institute for Quantum Information&State Key Laboratory of High Performance Computing,College of Computer Science and Technology,National University of Defense Technology,Changsha 410073,China)
出处 《计算机工程与科学》 CSCD 北大核心 2023年第3期398-405,共8页 Computer Engineering & Science
基金 国家自然科学基金(62061136011,61632021)。
关键词 量子博弈 光量子芯片 量子纠缠 量子计算 纳什均衡 quantum game photonic quantum chip quantum entanglement quantum computing Nash equilibrium
  • 相关文献

参考文献3

二级参考文献64

  • 1Neilsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (New York: Cambridge University Press)
  • 2Wu Y and Deng L 2005 Phys. Rev. A 71 053806
  • 3Eisert J, Wilkens M and Lewenstein M 1999 Phys. Rev. Lett. 83 3077
  • 4Du J F, Li H, Xu X D, Zhou X Y and Han R D 2001 Phys. Lett. A 289 9
  • 5Benjamn S C and Hayden P M 2001 Phys. Rev. A 64 030301
  • 6Du J F, Li H, Xu X D, Zhou X Y and Han R D 2002 Phys. Lett. A 302 229
  • 7Li H, Du J F and Massar S 2002 Phys. Lett. A 306 73
  • 8Chen K L, Ang H, Kiang D, Kwek L C and Lo C F 2003 Phys. Lett. A 316 317
  • 9Flitney A P and Abbott D 2005 J. Phys. A: Math. Gen. 38 449
  • 10Cao S and Fang M F 2006 Chin. Phys. 15 0060

共引文献2

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部