期刊文献+

基于注意力机制改进的LSTM空战目标意图识别方法 被引量:8

An Air Combat Target Intention Recognition Method Based on LSTM Improved by Attention Mechanism
下载PDF
导出
摘要 空战对抗过程中的目标状态数据呈现时序性、多维性等特征,为进一步提升目标意图识别的准确率,提出了一种基于改进注意力机制的长短期记忆网络(LSTM)目标识别方法,将空战可能出现的目标意图识别当成一个多分类问题处理。该方法首先通过目标实时的状态数据,生成特征序列;接着采用注意力机制提升目标的特征学习能力,增强空战过程中的主要目标状态特征表示,得到具有权值分配的特征向量;最后利用LSTM网络对目标特征向量进行训练,通过softmax层实现目标意图的识别。仿真实验表明,该方法利用注意力机制有效增强目标的特征学习,进一步提升了LSTM网络的识别精度,具有一定的科学性和有效性。 The target state data in the process of air combat confrontation presents the characteristics of time sequence and multi-dimensionality.In order to further improve the accuracy of target intention recognition,an LSTM target recognition method based on improved attention mechanism is proposed,and the target intention recognition that may occur in air combat is treated as a multi-classification problem.Firstly,the feature sequence is generated by the real-time state data of the target.Then,the attention mechanism is used to improve the feature learning ability of the target,enhance the state feature representation of the main target in the air combat process,and obtain the feature vector with weight allocation.Finally,the LSTM network is used to train the target feature vector,and the target intention is recognized through the softmax layer.The simulation results show that the proposed method effectively enhances the feature learning to the target by using the attention mechanism,and further improves the recognition accuracy of the LSTM network,which is scientific and effective.
作者 李战武 李双庆 彭明毓 江涛 鞠明 孙爱民 LI Zhanwu;LI Shuangqing;PENG Mingyu;JIANG Tao;JU Ming;SUN Ai’min
出处 《电光与控制》 CSCD 北大核心 2023年第3期1-7,共7页 Electronics Optics & Control
关键词 空战 目标意图识别 注意力机制 LSTM网络 权值分配 air combat target intention recognition attention mechanism LSTM network weight allocation
  • 相关文献

参考文献11

二级参考文献81

  • 1王三民,王宝树.贝叶斯网络在战术态势评估中的应用[J].系统工程与电子技术,2004,26(11):1620-1623. 被引量:21
  • 2王端龙,吴晓锋,冷画屏.对敌战场意图识别的若干问题[J].舰船电子工程,2004,24(6):4-9. 被引量:21
  • 3钟飞,钟毓宁.Mamdani与Sugeno型模糊推理的应用研究[J].湖北工业大学学报,2005,20(2):28-30. 被引量:30
  • 4宋元,章新华,郭徽东.空中目标战术意图层次推理框架及实现[J].情报指挥控制系统与仿真技术,2005,27(5):63-66. 被引量:16
  • 5Das S, Grey R, Gonsalves P. Situation assessment via Bayesian belief networks[C]//Fifth International Conference on Information Fusion, 2002 . 664 - 671.
  • 6Farnoush Mirmoeini, Vikram Krishnamurthy. Reconfigurable Bayesian networks for adaptive situation assessment in battle space[C]//Networking, Sensing and Control, 2005. proceedings, 2005.810 - 815.
  • 7Shafer G A. Mathematical theory of evidence[M]. Princeton: Princeton Univ. Press, 1976 . 3 - 26.
  • 8[1]N. Hatakeya, K. Furuta. Bayesian Network Modeling of Operator's Intent Inference [C]. IEEE 7th Human Factors Meeting, 2002, 55-60.
  • 9[2]V. Gorodetsky, O.Karsaev, I.Kotenko, etc. Multi-agent Information Fusion: Methodology, Architecture and Software Tool for Learning of Object and Situation Assessment [C], Proceedings of the 7th International Conference on Information Fusion, 2004, 346-353.
  • 10[3]B. Ball, E. Santos, S. Brown. Making Adversary Decision Modeling Tractable with Intent Inference and Information Fusion [C]. Proceedings of the 11th Conference on Computer Generated Forces and Behavioral Representation, 2002, 535-541.

共引文献114

同被引文献106

引证文献8

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部