摘要
设自然数n≥4,I_(n)和S n是有限链X n上的部分一一变换半群和对称群。对任意的正整数k满足3≤k≤n,令A^(*)_(k)表示X n上的k-局部交错群,再令A^(*)_(k)I_(n)=A^(*)_(k)∪(I_(n)\S n),A^(*)_(k)I_(n)是部分一一变换半群I_(n)的子半群。通过分析半群A^(*)_(k)I_(n)的子半群的结构,从而获得半群A^(*)_(k)I_(n)中(完全)独立子半群的完全分类。
Let n≥4,I n and S n be partial one-to-one transformation semigroup and symmetic group on a finite chain X n respectively.For an arbitrary k such that 3≤k≤n,let A*k be a k-local alternating group on X n,A^(*)_(k)I_(n)=A*k∪(I n\S n)and A^(*)_(k)I_(n)be a subsemigroup of I n.By anaylzing the construction of subsemigroups of the semigroup A^(*)_(k)I_(n),the complete classifications of(completely)isolated subsemigroups of the semigroup A^(*)_(k)I_(n)are obtained,respectively.
作者
史先锋
罗永贵
SHI Xianfeng;LUO Yonggui(School of Mathematical Sciences,Guizhou Normal University,Guiyang,Guizhou 550025,China)
出处
《贵州师范大学学报(自然科学版)》
CAS
2023年第2期86-90,共5页
Journal of Guizhou Normal University:Natural Sciences
基金
贵州师范大学学术新苗基金项目(黔师新苗[2021]BO8号)。
关键词
变换半群
k-局部交错群
(完全)独立子半群
transformation semigroup
k-local alternating group
(completely)independent subsemigroup