期刊文献+

基于人工智能及联邦学习的工程大脑技术研究 被引量:2

Technical Research on Engineering Brain Based on Artificial Intelligence and Federated Learning
下载PDF
导出
摘要 数字化浪潮催生了智慧建造与智慧城市的到来。在建筑业,智慧工地的建设方兴未艾,针对传统智慧工地建设部署的大量传感器系统,碎片化程度高、采集数据量巨大而分散,系统集成难,应用效果不理想的痛点和难点,分析并阐述了在智慧工地建设中采用基于人工智能及联邦学习构建的工程大脑的关键技术解决方案。实践表明:采用数字孪生技术提高自动化采集能力,采用人工智能技术升级自动化采集装置,采用联邦学习技术提升工程建造的智能化水平,最终打造工程大脑的整体解决方案能够有效提升智慧建造整体水平,在工程安全监管、质量监控、成本管控等各方面可为类似项目提供参考。 The wave of digitalization lias brought the rise of smart construction and smart cities.In the industry of construction,the development of intelligent construction sites is burgeoning.However,the traditional deployment of sensor systems in construction sites has several drawbacks;these systems are fragmented;the collected data is massive and scattered;system integrations are challenging;effects of applications are below expectations.To address these drawbacks,we proposed and implemented an engineering management framework called Engineering Brain(EBrain).In this paper,we analyzed the technical difficulties in engineering management and presenter!the detailed solution of EBrain with deep integration of artificial intelligence and federated learning.Our practical experience and results show that the improvement of automatic data collection using digital twin,upgrade of data collection devices using artificial intelligence,increase of intelligence level of engineering construction using federated learning,and the resulting EBrain framework as a whole effectively enhance the overall level of smart construction.These positive results provide a solid reference for similar engineering projects regarding safety supervision,quality control,and cost management.
作者 高旭超 GAO Xuchao(CRCC Great Bay Area Construction Co.Ltd.,Guangzhou Guangdong 511455,China)
出处 《铁道建筑技术》 2023年第3期1-4,13,共5页 Railway Construction Technology
基金 中铁二十五局集团有限公司科技研究开发计划项目(25G-2022B18)。
关键词 工程大脑 人工智能 数字孪生 联邦学习 智慧建造 Engineering Brain artificial intelligence digital twin federated learning smart construction
  • 相关文献

参考文献11

二级参考文献105

共引文献210

同被引文献17

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部