摘要
直接空气捕碳(DAC)技术属于一种负碳技术,作为碳捕集、存储和利用(CCUS)技术的有效补充,是助力实现“双碳”目标的重要技术之一。由于吸附能力强、再生能耗低、应用场景灵活以及结构可调性强,固体多孔材料在降低DAC经济成本和运行能耗方面具有不可替代的优势。本文从固体多孔材料的DAC原理出发,重点综述了包括沸石吸附剂、硅基吸附剂、炭基吸附剂、纳米氧化铝吸附剂、金属有机框架(MOF)材料吸附剂和多孔树脂材料吸附剂等DAC的研究现状,系统介绍和比较了固体多孔吸附材料的吸附容量、吸附选择性、水热稳定性、再生能耗以及循环稳定性方面的优缺点。本文着重分析了胺功能化改性和载体孔隙结构等因素对吸附CO_(2)性能的影响规律,对各类固体多孔材料在DAC应用中面临的挑战提出了具体的优化方向,并指出未来固体多孔吸附材料的设计开发应兼顾经济性和高效性,加快开展中试规模的DAC试验研究。
Direct air capture(DAC) technology is a negative carbon technology,which is an effective supplement to the carbon capture,utilization and storage(CCUS) technology and one of the important technologies to help achieve the carbon peaking and carbon neutrality goals.Solid porous materials have irreplaceable advantages in reducing the economic cost and operating energy consumption of DAC due to their strong adsorption capacity,low regeneration energy consumption,flexible application scenarios and adjustable structure.Starting from the principles of DAC of solid porous materials,this paper focused on reviewing DAC adsorbents,such as zeolite adsorbents,silica-based adsorbents,carbon-based adsorbents,nano-alumina adsorbents,MOF adsorbents and porous resin adsorbents.The advantages and disadvantages on adsorption capacity,adsorption selectivity,hydrothermal stability,regeneration energy consumption and cycle stability of solid porous materials are introduced and compared.The effects of amine functionalization modification and carrier pore structure on the adsorption performance of CO_(2) are emphatically analyzed,and specific optimization directions for the challenges faced by various solid porous materials in the application of DAC are prospected.It is pointed out that the design and development of solid porous adsorbents in the future should take both economy and efficiency into account,and further pilot-scale DAC experiments should be carried out.
作者
孔祥如
张肖阳
孙鹏翔
崔琳
董勇
KONG Xiangru;ZHANG Xiaoyang;SUN Pengxiang;CUI Lin;DONG Yong(National Engineering Laboratory for Reducing Emissions from Coal Combustion,Engineering Research Center of Environmental Thermal Technology of Ministry of Education,Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization,School of Energy and Power Engineering,Shandong University,Jinan 250061,Shandong,China;School of Environment Science and Engineering,Shandong University,Qingdao 266237,Shandong,China)
出处
《化工进展》
EI
CAS
CSCD
北大核心
2023年第3期1471-1483,共13页
Chemical Industry and Engineering Progress
基金
山东省重大科技创新工程项目(2020CXGC011402)。