摘要
荧光金属有机框架(FMOF)是一种很有前途的光电和生物应用材料,然而,一些主要缺点限制了它们在这些领域的广泛应用.首先,FMOF晶体难以用来构建柔性的自支撑平台.此外,这些材料对外部刺激表现出较低的光学稳定性,并且用于合成它们的金属离子通常有毒.基于此,我们开发了一种同轴微流控纺丝方法,实现了一步大规模连续制备核-壳FMOF微纤维.获得的自支撑FMOF基超细纤维具有85.6 MPa的高抗拉强度,是MOF复合材料中的最高强度值.此外,还证明了用该微流控方法生成的交联水凝胶壳可以有效地提高位于微纤维核心的FMOF晶体的光学稳定性,对抗可能会损坏FMOF的化学物质(如金属离子、酸、碱)以及热.最重要的是,由于水凝胶外壳的生物相容性和微纤维核心的固有荧光,基于FMOF的超细纤维具有较高的细胞活力(约96.6%)和多种细胞外荧光成像能力.因此,本文报道的基于柔性FMOF微纤维为设计光学和生物医学应用的新概念和材料组件提供了一个先进的平台.
Fluorescent metal-organic frameworks(FMOFs)have emerged as promising materials for optoelectronic and biological applications.However,their widespread use in these areas is limited due to some major drawbacks.First,it is difficult to construct flexible free-standing platforms with FMOF crystals.Moreover,these materials exhibit a low optical stability against external stimuli,and frequently,the metal ions used for their synthesis are toxic.Herein,a coaxial microfluidic spinning approach is developed to continuously generate core-shell FMOF-based microfibers in a one-step and large-scale fashion.The free-standing FMOF-based microfibers obtained showcase a high tensile strength of 85.6 MPa,the highest tensile strength reported for polymer@MOF-based composites.Moreover,it is also demonstrated that the crosslinked hydrogel shell generated with our microfluidic approach can effectively improve the optical stability of the FMOF crystals located at the core of the microfibers against a solution containing chemical species that can damage the FMOF crystals(e.g.,a metal ion),acid and/or alkali treatments as well as heat.Most importantly,the FMOF-based microfibers exhibit high cell viability(ca.96.6%)and versatile extracellular fluorescence imaging capabilities owing to both the biocompatibility of the hydrogel shell and the intrinsic fluorescence of the micofibers core.Accordingly,the herein reported flexible FMOF-based microfibers provide an advanced platform to design new concepts and material assemblies for optical and biomedical applications.
作者
殷悦
陈虹滨
林鹏程
余伟泰
曹小宝
盛鑫鑫
Josep Puigmarti-Luis
Yue Yin;Hongbin Chen;Pengcheng Lin;Weitai Yu;Xiaobao Cao;Xinxin Sheng;Josep Puigmartí-Luis(Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter,School of Materials and Energy,Guangdong University of Technology,Guangzhou Higher Education Mega Center,Guangzhou 510006,China;Guangzhou Laboratory,No.9 XingDaoHuanBei Road,Guangzhou International Bio Island,Guangzhou 510005,China;Departament de Química Física,Facultat de Química,Universitat de Barcelona,MartíI Franquès,1,Barcelona 08028,Spain;ICREA,Catalan Institution for Research and Advanced Studies,Pg.Lluís Companys 23,Barcelona 08010,Spain)
基金
financially supported by the National Natural Science Foundation of China(U20A20299)
Guangzhou Science and Technology Planning Project(202103000042)
Guangdong Basic and Applied Basic Research Foundation(2019A1515011379)
Guangdong Special Support Program(2017TX04N371)
S&T Special Projects(SRPG22-020)
Guangdong Enterprise Sci-tech Commissioner(GDKTP2020013400)。