期刊文献+

基于经验模态分解的钢丝绳缺陷漏磁检测 被引量:2

The magnetic flux leakage detection of wire ropes based on empirical mode decomposition
下载PDF
导出
摘要 在钢丝绳无损检测领域,漏磁检测是最成熟也是应用最广泛的一种方法,但受检测环境影响,其难以直接从漏磁信号中提取缺陷特征。为此提出了一种基于经验模态分解的缺陷检测方法,首先使用小波和自适应调整阈值的软阈值方法去除漏磁信号中的噪声分量;然后采用经验模态分解方法分解信号,提取其中微弱的有用信息;最后,结合中等相关及以上的分量对信号进行重构,从而提取损伤特征,确定了损伤类型和位置。所提方法实现了钢丝绳在安全可用范围内的最大化利用,具有良好的经济效益。 Wire rope is more and more widely used in industrial production.Its safety has become increasingly prominent.In the field of wire rope nondestructive testing,magnetic flux leakage testing is the most mature and widely used method.However,it is difficult to extract defect features directly from the signals of magnetic flux leakage testing due to the influence of testing environment.Therefore,a defect detection method based on empirical mode decomposition is proposed to detect defects.Firstly,the noise component in magnetic flux leakage signal is removed via wavelet and adaptive soft threshold method.Then,the obtained signal is decomposed by empirical mode decomposition,and the weakly related components are further processed by the wavelet method to extract the weak useful information.Finally,the signal is reconstructed by combining the weak information with the moderately related and above components,thus extracting the damage characteristics and determining damage types and damage locations.The proposed method achieves the maximum utilization of the wire rope in the safety available range with agood economic benefits.
作者 黄姗姗 李志农 毛清华 潘初元 张文魁 HUANG Shanshan;LI Zhinong;MAO Qinghua;PAN Chuyuan;ZHANG Wenkui(Key Laboratory of Nondestructive Testing,Ministry of Education,Nanchang Hangkong University,Nanchang 360063,China;Shaanxi Key Laboratory of Mine Electromechanical Equipment Intelligent Monitoring,Xi′an University of Science and Technology,Xi′an 710054,China;Luoyang Baikete Technology Development Co.,Ltd.,Luoyang 471000,China)
出处 《无损检测》 CAS 2023年第2期23-27,59,共6页 Nondestructive Testing
基金 国家自然科学基金(52075236) 西安科技大学开放基金(SKL-MEEIM201901)。
关键词 无损检测 经验模态分解 钢丝绳 损伤识别 nondestructive testing empirical mode decomposition wire rope damage identification
  • 相关文献

参考文献8

二级参考文献38

  • 1陈厚桂,武新军,康宜华.密封钢丝绳断丝漏磁监测系统[J].无损检测,2005,27(7):364-367. 被引量:3
  • 2王阳生,师汉民,杨叔子,李劲松,叶兆国,韩连生,刘连顺.钢丝绳断丝定量检测的原理与实现[J].中国科学(A辑),1989,20(9):993-1000. 被引量:20
  • 3田志勇,张耀,谭继文.基于BP神经网络的钢丝绳断丝定量检测[J].煤炭学报,2006,31(2):245-249. 被引量:22
  • 4中国机械工程学会无损检测学会.射线检测[M].机械工业出版社,1997.
  • 5煤矿安全规程[M].煤炭工业出版社,2005.
  • 6REKANOS I T,THEODOULIDIS T P, PANAS S M, et al. Impedance Inversion in Eddy Current Testing of Layered Planar Structures via Neural Networks[ J]. NDT&E Interna- tional, 1997,30 (2) :69 - 74.
  • 7UPADHYAYA B R,YAN W,BEHRAVESH M M,et al. De- velopment of a Diagnostic Expert System for Eddy Current Data Analysis Using Applied Artificial Intelligence Methods [J]. Nuclear Engineering and Design, 1999, 193 (1/2) : 1 -11.
  • 8SONG S J,SHIN Y K. Eddy Current Flaw Characterization in Tubes by Neural Networks and Finite Element Modeling [ J]. NDT&E International,2000,33 (4) :233 - 243.
  • 9YUSA N, CHENG W Y, CHEN Z M, et al. Generalized Neu- ral Network Approach to Eddy Current Inversion for Real Cracks [ J ]. NDT&E International,2002,35 ( 8 ) :609 - 614.
  • 10RAO B P C, RAJ B, JAYAKUMAR T, et al. An Artificial Neural Network for Eddy Current Testing of Austenitic Stainless Steel Welds [ J ]. NDT&E International, 2002,35 (6) :393 -398.

共引文献136

同被引文献13

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部