期刊文献+

基于改进PSO算法的机载光电平台分数阶控制 被引量:1

Fractional Order Control of Airborne Optoelectronic Platform Based on Improved PSO Algorithm
下载PDF
导出
摘要 机载光电平台存在来自于摩擦、质量不平衡、运动耦合和机载环境等干扰,传统的PID控制器控制性能差,抗干扰能力弱。针对这一问题,设计了一种动态性能好、鲁棒性强的分数阶控制器;同时提出一种基于改进速度和惯性权重的粒子群算法整定分数阶控制器的5个参数。仿真实验表明:改进后的粒子群算法拥有更快的收敛速度,求解更加精确;光电平台速度环控制系统超调量降低至0.13%,正弦扰动隔离度较标准算法提高64.06%,响应速度和鲁棒性大大提高。 The airborne optoelectronic platform suffers from interference such as friction,mass imbalance,motion coupling and airborne environment.The traditional PID controller has poor control performance and weak anti-interference ability.To solve this problem,a fractional order controller with good dynamic performance and strong robustness is designed.At the same time,a Particle Swarm Optimization(PSO)algorithm based on the improved velocity and inertia weight is proposed to adjust the five parameters of the fractional order controller.The simulation results show that the improved PSO algorithm has faster convergence rate and more accurate solution.The overshoot of the speed-loop control system of the optoelectronic platform is reduced to 0.13%,the isolation of sinusoidal disturbance is 64.06%higher than that of the traditional PSO algorithm,and the response speed and robustness are greatly improved.
作者 王华超 李伟 赵克军 沈晓洋 WANG Huachao;LI Wei;ZHAO Kejun;SHEN Xiaoyang(Science and Technology on Electro-Optical Control Laboratory,Luoyang 471000,China;Luoyang Institute of Electro-Optical Equipment,AVIC,Luoyang 471000,China;The Second Air Force Representative Office of Air Force Armament Department Stationed in Luoyang,Luoyang 471000,China)
出处 《电光与控制》 CSCD 北大核心 2023年第4期83-87,共5页 Electronics Optics & Control
关键词 机载光电平台 分数阶控制 改进粒子群算法 抗干扰 airborne optoelectronic platform fractional order controller improved PSO algorithm anti-interference
  • 相关文献

参考文献4

二级参考文献32

  • 1宋申民,邓立为,陈兴林.分数阶微积分在滑模控制中的应用特性[J].中国惯性技术学报,2014,12(4):439-444. 被引量:19
  • 2曹军义,梁晋,曹秉刚.基于分数阶微积分的模糊分数阶控制器研究[J].西安交通大学学报,2005,39(11):1246-1249. 被引量:17
  • 3RICBARD L. Magin. Fractional calculus in bioengineering[J]. Critical Reviews in Biomedical Engineering, 2004, 32(1): 1 - 193.
  • 4PODLUBNY I. Fractional-order systems and PI^λD^μ-controllers[J]. IEEE Trans on Automatic Control, 1999, 44(1): 208 -214.
  • 5LV Z F. Time-domain simulation and design of siso feedback control systems[D]. Taiwan: National Cheng kung University, 2004.
  • 6CAPONTTO R, FORTUNA L, PORTO D. A new tuning strategy for a non integer order pid controller[C]//IFAC2004, Bordeaux, France: [s.n.], 2004.
  • 7MONJE C A, VINAGRE B M, CHEN Y Q, et al. Proposals for fractional PI^λD^μ tuning[C]//The First IFAC Symposium on Fractional. Bordeaux, France: [s.n], 2004.
  • 8MAC B, HORI Y. Design of fractional order pid controller for robust two-inertia speed control to torque saturation and load inertia variation[C]//IPEMC. Xi'an, China: [s.n.], 2003.
  • 9XUE D Y, CHEN Y Q. A comparative introduction of four fractional order controllers[C]//Proc of the 4th World Congress on Intelligent Control and Automation. Piscataway, NJ, USA: IEEE Press, 2002: 3228 - 3235.
  • 10PODLUBNY I. The Laplace transform method for linear differential equations of the fractional order[J]. Fractional calculus Applied Analysis, 1997: 365- 386.

共引文献183

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部