期刊文献+

基于KNN分类算法的恶意软件检测 被引量:1

Malware Detection Based on KNN Classification Algorithm
下载PDF
导出
摘要 随着科技的发展,层出不穷的恶意软件对用户计算机系统的数据都构成了极大的威胁,如何准确、高效地检测出恶意软件是令人担忧的问题。几十年来,恶意软件检测已引起反恶意软件行业和研究人员的关注。面对日益复杂的恶意软件,需要新的防御技术来检测和打击新奇的攻击和威胁。人工智能、深度学习也为Windows恶意软件检测提供了新的技术。文章研究如何在现有的一些恶意软件检测方法的基础上,改进特征码的提取和检测模型算法,以提高恶意软件检测的准确度,保护用户计算机系统以及数据的安全性。 With the development of science and technology,the endless emergence of malware poses a great threat to the host or the data on the host.How to accurately and efficiently detect malware has become a worrying problem.For decades,malware detection has attracted the attention of anti malware industry and researchers.The increasingly complex malware needs new defense technologies to detect and combat novel attacks and threats.Artificial intelligence and deep learning also provide new technologies for Windows malware detection.Based on some existing malware detection methods,this project plans to continuously improve the extraction of signatures and detection model algorithms to improve the accuracy of malware detection and protect the security of host and data.
作者 赵飞 蔡东蛟 姜其师 ZHAO Fei;CAI Dongjiao;JIANG Qishi(Fuzhou Vocational and Technical College,Fuzhou 350121,China;Fujian Haichuang Optoelectronic Technology Co.,Ltd.,Fuzhou 350108,China)
出处 《数字通信世界》 2023年第3期42-44,共3页 Digital Communication World
基金 福建省教育厅中青年教师教育科研项目,基金编号JAT210821,课题名称:基于机器学习的恶意软件检测方法研究。
关键词 Windows恶意软件检测 特征选择 最近邻分类 Windows malware detection feature selection nearest neighbor classification
  • 相关文献

参考文献1

二级参考文献17

  • 1SEIFERT C, WELCH I, KOMISARCZUK P. Identification of malicious Web pages with static heuristics [ C ]//Proc of Australasian Telecom- munication Networks and Applications Conference. 2008:91-96.
  • 2RICHARDSON R. 12th annual edition of the CSI computer crime and security survey[ R ]. [ S. 1. ] :Computer Security Institution ,2008.
  • 3McAfee threats report: fourth quarter 2010 [ R]. [ S. 1. ] : McAfee Labs,2011.
  • 4HAN Lan-sheng, FU Cai, ZOU De-qing, et al. Task-based behavior de- tection of illegal codes [ J ]. Mathematical and Computer Model- ling,2012,55( 1 ) :80-86.
  • 5WANG C,PANG J M,ZHAO R C, et al. Malware detection based on suspicious behavior identification [ C ]//Proc of the 1st International Workshop on Education Technology and Computer Science. 2009: 198- 202.
  • 6TIAN R,BATTEN L M,ISLAM R,et al. Differentiating malware from cleanware using behavioural analysis [ C ]//Pro~ of the 5th IEEE In- ternational Conference on Malicious and Unwanted Software. 2010:23- 30.
  • 7RIECK K, LASKOV P. Linear-time computation of similarity measures for sequential data [ J]. Journal of Machine Learning Research, 2008,9(6/1 ) :23-48.
  • 8AHMED F, HAMEED H, SHAFIQ M Z, et al. Using spatio-temporal information in API calls with machine learning algorithms for malware detection [ C ]//Proc of the 2nd ACM Workshop on Security and Artificial Intelligence. New York : ACM Press, 2009 : 55- 62.
  • 9SZOR P. The art of computer virus research and defense [ M ]. [ S. 1. ] : Addison-Wesley Professional ,2005.
  • 10YASON V M. The art of unpacking[ EB/OL]. http://www, blackhat: com/presentations/bh-usa: 07/yason/whitepaper/bh-usa-07-yason-wp.pdf.

共引文献16

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部