期刊文献+

基于光学显微镜的锂离子电池材料老化衰减原位研究进展

Recent progress in aging degradation of lithium-ion battery materials via in-situ optical microscopy
下载PDF
导出
摘要 先进锂离子电池的发展需要更高性能的电池材料或更优化的电池结构,深入了解电池材料的老化衰减机理是提高电池性能的前提。原位光学显微镜方法具有操作简便、原位反应池模拟环境真实,以及从介观到宏观的大范围尺度进行表征的特点,是目前最适合开展原位研究的表征方法。本文综述了原位光学显微镜方法在锂离子电池材料老化衰减方面的研究进展,介绍了原位光学显微镜方法中原位反应池的典型结构,阐述了该方法应用于锂离子浓度及其分布、析锂、电池材料体积膨胀与开裂和应力应变演化等方面的研究进展。最后,提出了原位光学显微镜方法在光学显微镜分辨率、原位反应池功能性、多表征方法联用以及先进图像处理和分析方法等方面的未来关注方向。 Developing advanced lithium-ion batteries requires high-performance battery materials or optimized battery structures.An in-depth understanding of the aging degradation mechanism of battery materials is a prerequisite for improving battery performance.The insitu optical microscopy method has advantages of convenient operation,a realistic simulation environment in in-situ reaction cells,and characterization from mesoscopic to macroscopic scales.This paper reviews the recent progress in the in-situ study of the aging degradation of lithium-ion battery materials via optical microscopy.Furthermore,typical structures of in-situ optical microscopy reaction cells are summarized.Then,several applications are reviewed,including lithium-ion concentration and its distribution,lithium plating,volume expansion and cracking of battery materials,and stress-strain evolution.Finally,future directions on optical microscope resolution,the functionality of in-situ reaction cells,the combined use of different characterization methods,and advanced image processing and analysis methods are proposed.
作者 姚逸鸣 栾伟玲 陈莹 孙敏 YAO Yiming;LUAN Weiling;CHEN Ying;SUN Min(CPCIF Key Laboratory of Power Battery Systems and Safety,School of Mechanical and Power Engineering,East China University of Science and Technology,Shanghai 200237,China)
出处 《储能科学与技术》 CAS CSCD 北大核心 2023年第3期777-791,共15页 Energy Storage Science and Technology
基金 国家自然科学基金(52205153) 中国博士后科学基金资助项目(2022M721138)。
关键词 锂离子电池 老化衰减 光学显微镜 原位表征 lithium-ion battery aging degradation optical microscopy in-situ characterization
  • 相关文献

参考文献13

二级参考文献111

  • 1黄海江,解晶莹.锂离子蓄电池不同循环状态的过充行为[J].电源技术,2005,29(10):633-636. 被引量:4
  • 2Thurston T R, Jisrawi N M, Mukerjee S, et al. Synchrotron X-ray diffraction studies of the structural properties of electrode materials in operating battery cells [J]. Applied Physics Letters, 1996, 69(2): 194-196.
  • 3Liu L J, Chen L Q, Huang X J, et al. Electrochemical and in situ synchrotron XRD studies on AlzO3-coated LiCoO2 cathode material[J]. Journal of The Electrochemical Soci- ety, 2004, 151(9): A1344-A1351.
  • 4Cho J, Kim Y J, Park B. Novel LiCoO2 cathode material with A1203 coating for a Li ion cell[J]. Chemistry of Mate- rials, 2000, 12(12): 3788-3791.
  • 5Nam K W, Wang X J, Yoon W S, et al. In situ X-ray absorp- tion and diffraction studies of carbon coated LiFe/4Mnl/4Cox/4 Nil/4PO4 cathode during first charge[J]. Electrochemistry Communications, 2009, 11(4): 913-916.
  • 6Wang X J, Chen H Y, Yu X, et al. A new in situ syn- chrotron X-ray diffraction technique to study the chemical delithiation of LiFePO4[J]. Chemical Communications, 2011, 47(25): 7170-7172.
  • 7Wang L P, Li H, Huang X J, et al. A comparative study of Fd-3m and P4332 "LiNi0flVln1504" [J]. Solid State Ionics, 2011, 193(1): 32-38.
  • 8Sun Y, Zhao L, Pan H L, et al. Direct atomic-scale confir- mation of three-phase storage mechanism in Li4TisO2 an- odes for room-temperature sodium-ion batteries[J]. Nature Communication, 2013, 4: 1870.
  • 9Wang Y S, Yu X Q, Xu S Y, et al. A zero-strain layered metal oxide as the negative electrode for long-life sodium- ion batteries[J]. Nature Communication, 2013, 4: 2365.
  • 10Wu N, Lyu Y C, Xiao R J, et al. A highly reversible, low- strain Mg-ion insertion anode material for rechargeable Mg-ion batteries[J]. NPG Asia Materials, 2014, 6(8): e 120.

共引文献150

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部