期刊文献+

Modified Wild Horse Optimization with Deep Learning Enabled Symmetric Human Activity Recognition Model

下载PDF
导出
摘要 Traditional indoor human activity recognition(HAR)is a timeseries data classification problem and needs feature extraction.Presently,considerable attention has been given to the domain ofHARdue to the enormous amount of its real-time uses in real-time applications,namely surveillance by authorities,biometric user identification,and health monitoring of older people.The extensive usage of the Internet of Things(IoT)and wearable sensor devices has made the topic of HAR a vital subject in ubiquitous and mobile computing.The more commonly utilized inference and problemsolving technique in the HAR system have recently been deep learning(DL).The study develops aModifiedWild Horse Optimization withDLAided Symmetric Human Activity Recognition(MWHODL-SHAR)model.The major intention of the MWHODL-SHAR model lies in recognition of symmetric activities,namely jogging,walking,standing,sitting,etc.In the presented MWHODL-SHAR technique,the human activities data is pre-processed in various stages to make it compatible for further processing.A convolution neural network with an attention-based long short-term memory(CNNALSTM)model is applied for activity recognition.The MWHO algorithm is utilized as a hyperparameter tuning strategy to improve the detection rate of the CNN-ALSTM algorithm.The experimental validation of the MWHODL-SHAR technique is simulated using a benchmark dataset.An extensive comparison study revealed the betterment of theMWHODL-SHAR technique over other recent approaches.
出处 《Computers, Materials & Continua》 SCIE EI 2023年第5期4009-4024,共16页 计算机、材料和连续体(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部