摘要
为了保证工业生产过程的安全稳定运行,采取合理的故障诊断具有十分重要的意义和价值。因此,工业设备故障诊断一直是工业领域的研究热点。阐述了故障诊断的意义,并指出基于声信号进行故障诊断的可行性和优势。根据有无深度学习的参与,将基于声信号的故障诊断方法分为基于传统和基于深度学习两种类型;分别梳理了两类故障诊断方法的流程与思路,阐述并归纳了两类方法中典型算法的原理、优点、局限性、主要方法及诊断效果。最后,指出了当前工业设备故障诊断领域的研究难点、热点以及未来发展方向。
In order to guarantee the safety and stability of the industrial production process,it is of great significance and value to adopt reasonable fault diagnosis.Thus,fault diagnosis of industrial equipment has always been a hotspot in the field of industrial control.Firstly,this paper discusses the significance of fault diagnosis,and points out the feasibility and advantages of fault diagnosis based on acoustic signal.Then,according to whether the deep learning is involved,acoustic signal-based fault diagnosis approaches are segmented into traditional-based and deep learning-based categories.Then,it combs the essential ideas and flow of two categories respectively,expounds and summarizes the principle,advantages,limitations,main methods and diagnostic results.Finally,the paper points out the research difficulties,hotspots and the future development direction in the area of industrial equipment fault diagnosis.
作者
周玉蓉
张巧灵
于广增
徐伟强
ZHOU Yurong;ZHANG Qiaoling;YU Guangzeng;XU Weiqiang(School of Information Science and Engineering,Zhejiang Sci-Tech University,Hangzhou 310018,China;School of Computer Science and Technology,Zhejiang Sci-Tech University,Hangzhou 310018,China;College of Textile Science and Engineering(International Institute of Silk),Zhejiang Sci-Tech University,Hangzhou 310018,China)
出处
《计算机工程与应用》
CSCD
北大核心
2023年第7期51-63,共13页
Computer Engineering and Applications
基金
国家自然科学基金(61806178)
浙江省自然科学基金(LY21F010015)
浙江省科技厅重点研发计划项目(2021C01047)。
关键词
声信号
故障诊断
工业设备
机器学习
深度学习
acoustic signal
fault diagnosis
industrial equipment
machine learning
deep learning