摘要
作为自然语言处理技术中的底层任务之一,文本分类任务对于上游任务有非常重要的辅助价值;最近几年,深度学习广泛应用于NLP中的上下游任务的趋势,深度学习在下游任务文本分类中性能不错;但是目前的基于深层学习网络的模型在捕捉文本序列的长距离型上下文语义信息进行建模方面仍有不足,同时也没有引入语言信息来辅助分类器进行分类;针对这些问题,提出了一种新颖的结合Bert与Bi-LSTM的英文文本分类模;该模型不仅能够通过Bert预训练语言模型引入语言信息提升分类的准确性,还能基于Bi-LSTM网络去捕捉双向的上下文语义依赖信息对文本进行显示建模;具体而言,该模型主要有输入层、Bert预训练语言模型层、Bi-LSTM层以及分类器层搭建而成;实验结果表明,与现有的分类模型相比较,所提出的Bert-Bi-LSTM模型在MR数据集、SST-2数据集以及CoLA数据集测试中达到了最高的分类准确率,分别为86.2%、91.5%与83.2%,大大提升了英文文本分类模型的性能。
As a downstream natural language processing task,text classification has very vital auxiliary value for upstream task.Deep learning is widely used in the trend on upstream and downstream tasks of NLP in recent years,deep neural networks have very good performances in text classification tasks.However,current model based on deep learning networks has the shortage of modeling the long context semantic information of the text sequence,and it also does not introduce language information to assist the classifier to classify.To solve these problems,a novel English text classification model for combining Bert with Bi-LSTM is proposed.The proposed model can not only boost the performance of classification by introducing language information into Bert pre-training language model,but also capture bi-directional context semantic dependency information based on Bi-LSTM network to model the display of text.Specifically,the model is mainly composed of input layer,Bert pre-training language model layer,Bi-LSTM layer and classifier layer.Compared with baseline models,extensive experimental results demonstrate that the proposed Bert-Bi-LSTM model achieves the highest classification accuracy in MR dataset,SST-2 dataset and CoLA dataset with 86.2%,91.5%and 83.2%respectively,which greatly improves the performance of the English text classification model.
作者
张卫娜
ZHANG Weina(Xi'an Siyuan University,Xi'an 710038,China)
出处
《计算机测量与控制》
2023年第4期213-218,251,共7页
Computer Measurement &Control
基金
国家自然科学基金项目(61502290)。