期刊文献+

高固含率搅拌槽内临界转速的CFD模拟 被引量:2

CFD Simulation of Critical Speed in Stirred Tank with High Solid Content
下载PDF
导出
摘要 现有的针对液-固两相搅拌体系临界转速的研究多集中于低固含率体系,但工业中的高固含率体系十分常见。采用计算流体力学(CFD)方法对高固含率搅拌罐内的液-固两相流体流动进行了数值模拟,实现了对高固含率固-液搅拌罐内液固流动行为的直观预测,研究了颗粒物性(颗粒尺寸、颗粒密度)对颗粒悬浮特性的影响,结果表明,随着颗粒尺寸或颗粒密度的增加,颗粒的悬浮高度逐渐降低,最大固相体积分率增大。基于CFD方法的完全离底悬浮临界搅拌转速的预测方法,得到了高固含率搅拌罐内不同颗粒物性下关键参数离底悬浮临界转速Nc的变化规律:Nc随着固液密度差的增加而增加,随着颗粒直径的增加而增加;变化规律可用公式表示为:N_(c)^(∝)(ρ_(s)-ρ_(l))^(0.751 7),N_(c)^(∝)(d_(s))^(0.934 3)。 The existing research on the critical speed of liquid-solid two-phase stirring system mostly focuses on the low solid holdup system,but the high solid holdup system in industry is very common.Computational fluid dynamics(CFD)method was used to simulate the liquid-solid two-phase fluid flow in the stirred tank with high solid holdup,to realize the intuitive prediction of the liquid-solid flow behavior in the stirred tank with high solid holdup,and to study the influence of particle properties(particle size,particle density)on particle suspension characteristics.The results showed that with the increase of particle size or particle density,the suspension height of particles gradually decreased and the maximum solid volume fraction increased.Based on the prediction method of the critical stirring speed of complete off-bottom suspension based on CFD method,the change rule of the key parameter of off-bottom suspension critical speed Nc under different particle properties in the stirred tank with high solid content was obtained:Nc increases with the increase of solid-liquid density difference,and increases with the increase of particle diameter;The law of change could be expressed as:N_(c)^(∝)(ρ_(s)-ρ_(l))^(0.751 7),N_(c)^(∝)(d_(s))^(0.934 3).
作者 周延红 刘胜军 龚浩 董贺 孟芳 Zhou Yanhong;Liu Shengjun;Gong Hao;Dong He;Meng Fang(Xinjiang TianyeHuixiang New Materials Co.,Ltd.,Shihezi,Xinjiang 832061,China;R&D Center for Petrochemical Technology,Key Laboratory for Green Chemical Technology of the Ministry of Education,Tianjin University,Tianjin 300072,China)
出处 《化工设备与管道》 CAS 北大核心 2023年第1期48-54,共7页 Process Equipment & Piping
关键词 搅拌罐 颗粒悬浮 CFD 固相体积分率 临界转速 高固含率 stirred tank particle suspension CFD solid volume fraction critical speed high solid holdup
  • 相关文献

参考文献4

二级参考文献29

  • 1李良超,张仲敏,黄雄斌.固液搅拌槽内近壁区液相速度研究[J].北京化工大学学报(自然科学版),2005,32(1):33-38. 被引量:17
  • 2BOHNET M, NIESMAK G. Distribution of solids in stirred suspension [J]. German Chemical Engineering, 1980 (3): 57-55.
  • 3OSHINOWO I M, BAKKER A. CFD modeling of solid suspensions in stirred tanks [C]// Symposium on Computational Modeling of Metals, Minerals and Materials, TMS Annual Meeting. Seattle, USA, 2002.
  • 4KHOPKAR A R, KASAT G R, PANDIT A, B, et al. CFD simulation of mixing in tall gas liquid stirred vessel: role of local ow patterns [J]. Chemical Engineering Science, 2006, 61 (9): 2921-2929.
  • 5ZWIETERING T N. Suspending of solid particles in liquid by agitators [J]. Chem Eng Sci, 1958, 8(3 ): 244-253.
  • 6LJUNGQVIST M, RASMUSON A. Numerical simulation of the two phase flow in an axially stirred vessel [J]. Chemical Engineering Research and Design, 2001, 79(5 ): 533-546.
  • 7MONTANTE G, MICALE G, MAGELLI F, et al. Experiments and CFD predictions of solid partiele distribution in a vessel agitated with four pitched blade turbines [J]. Chemical Engineering Research and Design, 2001,79( 8 ) : 1005-1010.
  • 8KHOPKAR A R,RAMMOHAN A R, RANADE V V, et al. Gas liquid ow generated by a Rushton turbine in stirred vessel: CARPT/CT measurements and CFD simulations [J]. Chemical Engineering Science, 2005, 60( 8 ): 2215-2229.
  • 9BRUCATO A, GRISAFI F, MONTANTE G. Particle drag coefficient in turbulent fluids [J]. Chemical EngineeringScience, 1998, 53( 18): 3295-3314.
  • 10KHOPKAR A R, KASAT G R, PANDIT A B, et al. CFD simulation of solid suspension in stirred slurry reactor [J]. Industrial and Engineering Chemistry Research,2006, 45: 4416-4428.

共引文献75

同被引文献27

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部