期刊文献+

基于YOLO v5的铁路塞钉检测方法 被引量:3

Inspection Method of Railway Plug Pin Based on YOLO v5
下载PDF
导出
摘要 针对高速铁路和普速铁路的塞钉智能检测问题,提出基于YOLO v5的塞钉检测方法。该方法对训练模型采用He方法初始化,采用微调模式使模型收敛,同时使用dropout正则化方法解决过拟合问题。在训练数据时,对多样式塞钉进行有效分类和样本自动化裁剪,并利用塞钉样本的灰度直方图对数据进行增强;采用非冗余多置信度的方式进行检测,通过先验经验和增加反例来减少误判,并在检测时自动累积塞钉样本。该检测方法已投入现场使用,有效满足了铁路智能巡检的需求。 In view of the intelligent inspection of plug pins for high speed and conventional railways,a plug pin inspection method based on YOLO v5 is proposed.In this method,the training model is initialized by He method,which converges the model by fine-tuning mode,and solves the overfitting problem by dropout regularization method.During data training,multiple-style plug pins are effectively classified and samples are automatically cut,and the grayscale histogram of plug pin samples is used to consolidate the data.Non-redundant multi-confidence coefficient methods are adopted for inspection,and misjudgment is reduced by prior experience and additional counter-examples,and plug pin samples are automatically accumulated during inspection.This inspection method has been applied on site,effectively meeting the needs of intelligent railway patrol inspection.
作者 聂海丽 NIE Haili(Science and Technology Research Institute,China Railway Shanghai Group Co.,Ltd.,Shanghai 200071,China)
出处 《中国铁路》 2023年第4期117-123,共7页 China Railway
关键词 铁路塞钉 YOLO v5 目标检测 图像识别 智能巡检 railway plug pin YOLO v5 target inspection image recognition intelligent patrol inspection
  • 相关文献

参考文献5

二级参考文献30

  • 1孙翠玲,张春生,蒋立生.UM71站内电码化设备维修及原理分析(上)[J].铁道通信信号,2006,42(2):28-30. 被引量:3
  • 2孙翠玲,张春生,蒋立生.UM71站内电码化设备维修及原理分析(下)[J].铁道通信信号,2006,42(3):32-35. 被引量:1
  • 3卡十馨瑜.模拟视觉机制的图像处理若干方法研究[D].成都:电子科技大学,博士学位论文,2012.
  • 4DalalN, Triggs B. Histograms of oriented gradients for human detection[C].// Cordelia Schmid, et al. IEEE Computer Society Conference on Computer Vi- sion and Pattern Recognition, 2005: 886-893.
  • 5Messom CH, Barezak ALC). Fast and Efficient Rota- ted Haar-like Features Using Rotated Integral Images [C]. //Australian (Sanference on Robotics and Auto- mation (ACRA2006), 2006: 1-6.
  • 6Felzenszwalb PF, Girshick RB, McAllester D, Ra- manan D. Object Detection with Discriminatively Trained Part Based Models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010:32 (9) : 1627-45.
  • 7Bourdev L, Malik J. Poselets.. Body Part Detectors Trained Using 3D Human Pose Annotations[C].// Antoniou GE, et al. International Conference on Com- puter Vision (ICCV2009), 2009: 1365-1372.
  • 8Stauffer C, Grimson W. Adaptive Background Mixture Models for Real-time Tracking[C].// IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1999: 2246.
  • 9Barron J L, Fleet D J, Beauchemin S S. Performance of Optical Flow Techniques[J]. International Journal of Computer Vision, 1994, 12(1) : 43-77.
  • 10Viola P, Jones M. Robust real-time object detection [J]. International Journal of Computer Vision, 2001, 3(4) : 34-47.

共引文献27

同被引文献20

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部