期刊文献+

基于修正LM算法的Barlat89和Y-U联合模型参数反求

Parameter Inverse of Barlat89 and Y-U Joint Model Based on Modified LM Algorithm
下载PDF
导出
摘要 为精确预测高强钢的回弹,需要使用准确且全面描述其材料力学性能的材料模型参数,由此提出了一种基于修正的Levenberg Marquardt(LM)优化算法对Barlat89和YoshidaUemori(Y-U)联合模型参数进行反求的方法 .以高强钢材料DP780为例,通过单向拉伸和拉伸压缩试验获取材料的力学性能曲线,使用LS-DYNA软件进行与试验对标的仿真分析,采用修正的LM算法连续优化仿真预设的材料模型参数,使得最终仿真求解输出与试验获取的材料性能曲线达到最小二乘意义上的相等,得到最优的材料联合模型参数.研究结果表明:使用的LM算法相关系数为0.951 4,算法收敛性较好;反求出的Barlat89和Y-U联合模型参数,能够同时较准确地描述DP780材料单向拉伸和拉伸压缩力学性能曲线;仿真结果曲线与试验曲线拟合程度较高,两者的平均相对误差为4.65%.此方法所获取的材料模型参数反映了材料正、反向加载时的力学特性,同时能够极大地提升回弹预测精度. In order to accurately predict the springback of high-strength steel,it is necessary to use the mate⁃rial model parameters that accurately and comprehensively describe the material mechanical properties.Therefore,an inverse calculationmethod of the parameters of the Barlat89 and Yoshida-Uemori(Y-U)combined model was proposed based on the modified Levenberg Marquardt(LM)optimization algorithm.Using high-strength steelDP780 as an example,the mechanical property curve of the material was obtained through unidirectional tensile and tensile compression tests.LS-DYNA software was used to simulate and analyze the object of the test.The modified LM algo⁃rithm was used for continuously optimizing the material model parameters preset by simulation.Finally,the simula⁃tion output equals the material property curve obtained from the experiment in the sense of least squares,and the op⁃timal material combination model parameters are obtained.The results show that the correlation coefficient of the LM algorithm is 0.9514,and the convergence of the LM algorithm is good.The inverse Barlat89 and Y-U model param⁃eters can accurately describe the uniaxial tensile and tensile compression mechanical properties of DP780 materials at the same time.The simulation curve fits well with the test curve,and the average relative error of the two curves is 4.65%.The material model parameters obtained by this method reflect the mechanical properties of materials under forward and reverse loading and can markedly improve the prediction accuracy of springback.
作者 刘迪辉 王小康 王双明 LIU Dihui;WANG Xiaokang;WANG Shuangming(College of Mechanical and Vehicle Engineering,Hunan University,Changsha 410082,China;Liuzhou Fuzhen Bodywork Industrial Co.,Ltd.,Liuzhou 545000,China)
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第4期1-8,共8页 Journal of Hunan University:Natural Sciences
基金 湖南省自然科学基金资助项目(201631390158)。
关键词 高强钢 回弹 本构模型 优化 材料试验 high strength steel springback constitutive models optimization materials testing
  • 相关文献

参考文献9

二级参考文献46

共引文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部